Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Квадратное пирамидальное число

Из Википедии — свободной энциклопедии

Геометрическое представление квадратного пирамидального числа: 1 + 4 + 9 + 16 = 30.

Квадра́тное пирамида́льное число́ (часто называемое просто пирамида́льным число́м) — пространственное фигурное число, представляющее пирамиду, с квадратным основанием. Квадратные пирамидальные числа также выражают количество квадратов со сторонами, параллельными осям координат, в решётке из N ×N точек.

Начало последовательности:

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, … (последовательность A000330 в OEIS).

Формула

Общая формула для -го по порядку квадратного пирамидального числа:

Это частный случай формулы Фаулхабера[en], которую несложно доказать по индукции. Впервые равносильная формула была приведена в «Книге абака» Фибоначчи (XIII век).

В современной математике формализация фигурных чисел происходит с помощью многочленов Эрара. Многочлен Эрара L(P,t) многогранника Pмногочлен, который подсчитывает количество целых точек в копии многогранника P, который увеличивается путём умножения всех его координат на число t. Многочлен Эрара пирамиды, основанием которой является квадрат со стороной 1 с целыми координатами, а вершина которой находится на высоте 1 над основанием, вычисляется по формуле[1]:

(t + 1)(t + 2)(2t + 3)/6 = Pt + 1.

Производящая функция

Производящая функция для квадратных пирамидальных чисел имеет вид:

Связь с другими фигурными числами

Квадратные пирамидальные числа могут быть также выражены в виде суммы биномиальных коэффициентов:

Биномиальные коэффициенты, возникающие в этом представленном выражении, — это тетраэдральные числа. Эта формула выражает квадратные пирамидальные числа в виде суммы двух чисел, так же как любое квадратное число является суммой двух последовательных треугольных чисел. В этой сумме, одно из двух тетраэдрических чисел считает количество шаров в сложенной пирамиде, которые расположены выше или по одну сторону от диагонали квадратного основания пирамиды; а второе — расположенных по другую сторону диагонали. Квадратные пирамидальные числа также связаны с тетраэдральными следующим образом[2]:

Сумма двух последовательных квадратных пирамидальных чисел является октаэдрическим числом.

Проблема нахождения квадратных пирамидальных чисел, являющихся одновременно квадратными числами, известна как задача об укладке пушечных ядер и была сформулирована Люка (1875)[3].

Примечания

  1. Beck, M.; De Loera, J. A.; Develin, M. & Pfeifle, J. (2005), Coefficients and roots of Ehrhart polynomials, Integer points in polyhedra—geometry, number theory, algebra, optimization, vol. 374, Contemp. Math., Providence, RI: Amer. Math. Soc., с. 15—36 
  2. Деза Е., Деза М., 2016, с. 75.
  3. Édouard Lucas. Question 1180 // Nouv. Ann. Math. — 1875. — Вып. 14. — С. 336.

Литература

Ссылки

Эта страница в последний раз была отредактирована 21 сентября 2022 в 13:48.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).