Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

В теории категорий функторы между двумя зафиксированными категориями образуют категорию, морфизмы в которой — естественные преобразования.

Определение

Пусть C -малая категория (её объекты и морфизмы образуют множество) и D — произвольная категория. Тогда категория функторов из C в D, обозначаемая Fun(C, D), Funct(C,D) или DC, определяется следующим образом: объекты — ковариантные функторы из C в D, морфизмы — естественные преобразования между этими функторами. Поскольку композиция естественных преобразований естественна (см. Естественное преобразование) и тождественное преобразование естественно, DC удовлетворяет аксиомам категории.

Аналогичным образом определяется категория контравариантных функторов из C в D, обозначаемая Funct(Cop,D).

Примеры

  • Если I — малая дискретная категория (все морфизмы — тождественные), то функтор из I в C — это просто семейство объектов C, индексированное I. Категории CI в этом случае соответствует некоторая категория произведения.
  • Категория стрелок (объекты — морфизмы C, морфизмы — коммутативные квадраты) — это категория , где 2 обозначает категорию из двух объектов, тождественных морфизмов, а также одного морфизма из первого объекта во второй.
  • ориентированный граф представляет собой множество стрелок и множество вершин, сопоставляющих каждой стрелке вершину-начало и вершину-конец. Категория ориентированных графов представляет собой не что иное как категорию SetC, где C — категория с двумя объектами и двумя морфизмами между ними, а Set — категория множеств.

Свойства

Литература

Эта страница в последний раз была отредактирована 31 декабря 2019 в 09:09.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).