Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Категория топологических пространств

Из Википедии — свободной энциклопедии

Категория топологических пространств — категория, объекты которой — топологические пространства, а морфизмы — непрерывные отображения, основной объект изучения категорной топологии. Стандартное обозначение — . Является конкретной категорией, поэтому её объекты можно понимать как множества с дополнительной структурой.

Естественный забывающий функтор, сопоставляющий топологическому пространству его множество-носитель: . Этот функтор имеет как левый сопряжённый , снабжающий множество дискретной топологией, так и правый сопряжённый , снабжающий множество антидискретной топологией. Более того, поскольку любая функция между дискретными или антидискретными пространствами непрерывна, оба этих функтора задают полное вложение категории множеств в .

Является полной и кополной, то есть в ней существуют все малые пределы и копределы. Забывающий функтор: единственным образом поднимает пределы, а также сохраняет их. Поэтому для получения пределов (копределов) в достаточно снабдить нужной топологией пределы (копределы) в : если  — диаграмма в и  — предел диаграммы в , то соответствующий предел (копредел) в можно получить, снабдив начальной топологией (конечной топологией).

Мономорфизмы в  — это непрерывные инъективные отображения; эпиморфизмы — непрерывные сюръективные отображения, а изоморфизмы — гомеоморфизмы. В нет нулевых морфизмов, в частности эта категория не предаддитивна.

Не является декартово замкнутой, потому что не для всех её объектов существуют экспоненциалы.

Энциклопедичный YouTube

  • 1/3
    Просмотров:
    1 982
    577
    3 491
  • ЧЕННЕЛИНГ. Переход на новые категории четвертой мерности. Часть 3.
  • Производные категории когерентных пучков и геометрические фантомные категории
  • Алгебраическая топология | карманные бесконечности

Субтитры

Литература

  • Herrlich, Horst. Topologische Reflexionen und Coreflexionen (нем.). — 1968. — (Springer Lecture Notes in Mathematics, Vol. 78).
  • Categorical topology 1971—1981 (H. Herrlich) // General Topology and its Relations to Modern Analysis and Algebra 5 (англ.). — Heldermann Verlag, 1983. — P. 279—383.
  • Categorical Topology — its origins, as examplified by the unfolding of the theory of topological reflections and coreflections before 1971; Categorical topology 1971—1981 (H. Herrlich, G. E. Strecker) // Handbook of the History of General Topology / eds. C.E.Aull, R. Lowen. — Kluwer Acad. Publ., 1997. — Т. 1. — С. 255—341.
  • Adámek, Jiří, Herrlich, Horst, & Strecker, George E. Abstract and Concrete Categories. — John Wiley & Sons. — ISBN 0-471-60922-6.
  • Маклейн С. Категории для работающего математика = Categories for the working mathematician / Пер. с англ. под ред. В. А. Артамонова. — М.: Физматлит, 2004. — 352 с. — ISBN 5-9221-0400-4.
Эта страница в последний раз была отредактирована 13 марта 2019 в 10:57.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).