Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Ионно-звуковые солитоны

Из Википедии — свободной энциклопедии

Ио́нно-звуковы́е солито́ны — вид солитонов в плазме, представляющих собой устойчивые уединённые сжатия ионной плотности, распространяющиеся в пространстве без изменений формы.

Общие принципы

В однородной плазме возможно существование ионно-звуковых волн, которые при достаточно высокой амплитуде становятся нелинейными. Нелинейность этих волн в первую очередь связана с конвективным членом в уравнениях гидродинамики плазмы. Наличие нелинейности приводит к укручению фронта пучка ионно-звуковых волн, которое в некоторый момент компенсируется дисперсией, стремящейся наоборот расширить волновой пакет. В солитонах дисперсионное расплывание в каждой точке уравновешено нелинейными эффектами.

Экспериментально ионно-звуковые солитоны обнаружены впервые в 1970 году.

Одномерное приближение

В наиболее простом случае сильно неизотермической плазмы, в которой температура электронов значительно превышает температуру ионов, одномерные нелинейные ионно-звуковые волны могут быть описаны уравнением Кортевега — де Фриза, имеющим следующий безразмерный вид:

где переменная отвечает возмущению концентрации ионов в плазме. Уравнение Кортевега — де Фриза имеет семейство решений в виде уединённых волн вида:

где  — безразмерная амплитуда солитона, являющаяся свободным параметром. Скорость такого солитона равна .

Двумерное приближение

В двумерной геометрии обобщением уравнения Кортевега — де Фриза является уравнение Кадомцева — Петвиашвили, имеющее вид:

Ионно-звуковым волнам соответствует знак минус в правой части уравнения. Это уравнение имеет устойчивые уединённые решения вида:

где параметр определяет ориентацию ионно-звуковых солитонов по отношению к направлению магнитного поля.

См. также

Литература

Эта страница в последний раз была отредактирована 30 декабря 2020 в 06:32.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).