Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Индуктивный предел (или прямой предел, копредел) — конструкция, возникшая первоначально в теории множеств и топологии, а затем нашедшая широкое применение во многих разделах математики. Двойственное понятие — проективный (или обратный) предел.

Эта конструкция позволяет построить новый объект по последовательности (индексированной направленным множеством) однотипных объектов и набору отображений , . Для индуктивного предела обычно используется обозначение

.

Мы дадим определение для алгебраических структур, а затем — для объектов произвольной категории.

Определение

Алгебраические объекты

В этом разделе будет дано определение, подходящее для множеств с добавленной структурой, таких как группы, кольца, модули над фиксированным кольцом и т. д.

Пусть  — направленное множество с отношением предпорядка и пусть каждому элементу сопоставлен алгебраический объект , а каждой паре , , в которой , сопоставлен гомоморфизм , причём  — тождественные отображения для любого и для любых из . Такую систему объектов и гомоморфизмов называют также направленной системой.

Тогда множество-носитель прямого предела направленной системы  — это фактормножество дизъюнктного объединения множеств-носителей по отношению эквивалентности:

Здесь и эквивалентны, если существует такое , что . Интуитивно, два элемента дизъюнктного объединения эквивалентны, тогда и только тогда, когда они «рано или поздно станут эквивалентными» в направленной системе. Более простая формулировка — это транзитивное замыкание отношения эквивалентности «каждый элемент эквивалентен своим образам», то есть .

Из этого определения легко получить канонические морфизмы , отправляющие каждый элемент в его класс эквивалентности. Добавленную алгебраическую структуру на можно получить, исходя из знания этих гомоморфизмов.

Определение для произвольной категории

В произвольной категории прямой предел можно определить с помощью его универсального свойства. А именно, прямой предел направленной системы  — это объект категории, такой что выполняются следующие условия:

  1. существует такое семейство отображений , что для любых ;
  2. для любого семейства отображений , в произвольное множества , для которого выполнены равенства для любых , существует единственное отображение , что , для всех .

Более общо, прямой предел направленной системы — это то же самое, что её копредел в категорном смысле.

Примеры

  • На произвольном семействе подмножеств данного множества можно задать структуру предпорядка по включению. Если этот предпорядок действительно является направленным, то прямой предел семейства — это обычное объединение множеств.
  • Пусть p — простое число. Рассмотрим направленную систему из групп Z/pnZ и гомоморфизмов Z/pnZZ/pn+1Z, индуцированных умножением на p. Прямой предел этой системы содержит все корни из единицы, порядок которых — некоторая степень p. Их группа по умножению называется группой Прюфера Z(p).
  • Пусть F — пучок на топологическом пространстве X со значениями в C. Зафиксируем точку x в X. Открытые окрестности x образуют направленную систему по включению (UV если U содержит V). Функтор пучка сопоставляет ей направленную систему (F(U), rU,V), где r — отображения ограничения. Прямой предел этой системы называется слоем F над x и обозначается Fx.
  • Прямые пределы в категории топологических пространств получаются присвоением финальной топологии[en] соответствующему множеству-носителю.

Литература

Эта страница в последний раз была отредактирована 7 января 2023 в 00:06.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).