Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Иммерсия (микроскопия)

Из Википедии — свободной энциклопедии

Иммерсия (иммерсионный метод микроскопического наблюдения) в оптической микроскопии — это введение между объективом микроскопа и рассматриваемым предметом жидкости для усиления яркости и расширения пределов увеличения изображения.

Иммерсионная система — оптическая система, в которой пространство между первой линзой и предметом заполнено жидкостью. Применяемая таким образом жидкость называется иммерсионной.

Принцип действия

Из основной формулы разрешающей способности микроскопа: d = 0,61λ/А, следует, что предел разрешения определяется длиной волны λ и числовой апертурой объектива А. Так как не всегда возможно изменить длину волны (особенно если исследование производится в белом свете), то для достижения лучшего разрешения стремятся применять объектив, имеющий бо́льшую числовую апертуру.

Однако для «сухого» объектива с показателем преломления среды перед его передней линзой n=1 максимальное значение числовой апертуры объектива не может превысить значение около 0,95.

Для решения этой проблемы берут иммерсионную жидкость, показатель преломления которой n2 и показатель преломления фронтальной линзы n3 выбраны определённым образом. Исходящие от одной точки объекта OP лучи проходят без преломления через иммерсионную плёнку и могут «приниматься» фронтальной линзой объектива.

В этом случае числовая апертура увеличивается, а предел разрешения уменьшается в n2 раз.

Дополнительные преимущества

  • Возникающие на поверхностях покровного стекла и фронтальной линзе объектива паразитные отражения существенно меньше, нежели у «сухих» объективов, а в некоторых случаях паразитные рефлексы могут быть полностью устранены. Это улучшает контраст изображения и позволяет поднять освещённость препарата без вредного влияния на изображение.
  • Толщина слоя жидкости между объективом и препаратом может меняться, и за счёт этого можно в некоторых пределах изменять компенсацию сферической аберрации.

Иммерсионные жидкости

В расчёте объективов микроскопа оптические параметры иммерсионной жидкости (показатель преломления и дисперсия) учитываются при коррекции аберраций оптической системы (исправление кривизны поля, сферических и хроматических аберраций).

Применяются:

Иммерсионное масло

В качестве первой иммерсионной жидкости применялось природное кедровое масло. Однако его главным недостатком было изменение свойств с течением времени. На воздухе жидкость постепенно уплотнялась вплоть до осмоления и отвердения, показатель преломления менялся.

В XX веке начало производиться и ныне применяется исключительно синтетическое иммерсионное масло, не обладающее этим недостатком.

Считается, что первый серийный микроскоп с рассчитанным объективом масляной иммерсии появился в 1878 году.

Основные параметры иммерсионного масла стандартизованы.

По ГОСТ 13739-78 «Иммерсионное масло»: показатель преломления nd = 1,515±0,001; коэффициент пропускания в слое толщиной 1 мм в спектральном диапазоне 500—720 нм — 95 %, 400—480 нм — 92 %. Иммерсионное масло должно применяться при температуре около +20 °C.

По Международному стандарту ISO 8036/1 «Иммерсионное масло»: показатель преломления nе = 1,518 + 0,0005; коэффициент пропускания в слое толщиной 10 мм в спектральном диапазоне 500—760 нм — 95 %, 400 нм — 60 %.

По Международному стандарту ISO 8036-1/2 «Иммерсионное масло для люминесценции»: коэффициент пропускания в слое толщиной 10 мм в спектральном диапазоне 500—700 нм — 95 %, 365—400 нм — 60 %.

Некоторое отличие в стандартах означает, в частности, возможное ухудшение работы конкретного объектива с несоответствующим ему маслом. Результатом этого могут быть:

  • снижение контраста из-за появления сферической аберрации
  • окраску поля на объекте
  • неравномерность освещённости в плоскости предмета (объекта) и, соответственно, в плоскости, где формируется изображение объекта
  • нерезкость по полю в плоскости изображения объекта.

Водный раствор глицерина

Глицерин — применение в качестве иммерсионной жидкости нашёл благодаря пропусканию ультрафиолетового диапазона электромагнитных волн. Используется в виде водного раствора определённой концентрации. Первый объектив глицериновой иммерсии был рассчитан в 1867 году.

Вода

Используется дистиллированная вода. Считается, что впервые в серийный микроскоп рассчитанный объектив водной иммерсии был введён в 1850 году.

Коррекционные оправы

В конструкцию ряда иммерсионных объективов входят коррекционные оправы. Их установка определяет точное взаиморасположение линзовой системы объектива и покровного стекла. Наибольшее влияние точность задания этого взаиморасположения оказывает на компенсацию сферической аберрации оптической системы микроскопа.

На корпусе объектива обычно нанесена маркировка, показывающая:

  • или пределы толщины покровного стекла (положение линз в системе объектива, при котором именно эта толщина покровного стекла скомпенсирована), например «0-0,17-0,5»
  • или условное обозначение иммерсионной жидкости, например «OIL—GLYС—DRY».

Соответственно, на корректирующей оправе наносится конкретное значение, под которое скомпенсировано данное сочетание объектива и оправы. Смена корректировочных оправ требуется в следующих случаях:

Работа с разными жидкостями

Объектив, рассчитанный на работу с различными иммерсионными жидкостями (как правило - «водный—масляный—глицериновый» или две иммерсионные системы в разных сочетаниях), а также в вариантах «сухая—иммерсионная», требует компенсации разницы в показателях преломления.

Толщина покровного стекла

Работа со стандартным покровным стеклом (n = 1,52) требует корректировки и на толщину покровного стекла, если объектив рассчитан на водную (n = 1,33) или глицериновую (n=1,47) иммерсию. Такие аппараты имеют на корпусе буквенные метки, указывающие правильное положение коррекционного кольца для конкретного типа жидкости, а в пределах этой метки указываются толщины покровных стёкол, для которых компенсация сферической аберрации минимальна.

История

Роберт Гук был первым учёным, объяснившим технику иммерсии в докладе «Lectures and Collections», прочитанном в 1678 году. Текст доклада был им напечатан в его книге «Microscopium» в том же году. Именно с этого события начинается история иммерсионных объективов.

Дэвид Брюстер в 1812 году предложил иммерсию как средство исправления хроматических аберраций объектива, и приблизительно в 1840 году Джованни Баттиста Амичи (1786—1868) изготовил первые иммерсионные объективы. В качестве иммерсионной жидкости применялись анисовые масла, так как их показатель преломления был наиболее близок к таковому для стекла.

Однако при этом не ставилась задача увеличения апертуры. Амичи понял эту проблему. Но из-за высокой стоимости предметных стёкол микроскописты XIX века ещё не уделяли должное внимание масляной иммерсии. В результате он занялся водной иммерсией. В 1853 году он сконструировал водно-иммерсионный объектив и выставил его в 1855 году в Париже.

Роберт Толл (1820—1883) в 1858 году создал объектив с заменяемыми фронтальными линзами: одна — для работы в сухом состоянии, а другая — для водной иммерсии.

Эдмунд Хартнал (1826—1891) в 1859 году продемонстрировал свои первые водно-иммерсионные объективы с коррекционным кольцом. В последующие 5 лет он продал около 400 штук. Это породило целый бум производства объективов для водной иммерсии среди многих немецких производителей микроскопов, например Бруно Хазерта в Айзенахе, Келлнера в Вецларе, G&S Мерц в Мюнхене и Хугo Шродера в Гамбурге. Однако иммерсионные объективы Хартнала считались лучшими.

Париж. 1867 год. Эрнст Гундлах (1834—1908), желая использовать иммерсионную среду с бо́льшим показателем преломления, чем вода, сконструировал и представил на «Универсальной выставке» объектив для глицерина.

Оптические мастерские Цейс в Йене изготовили в 1871 г. первые водно-иммерсионные объективы. И уже в 1872 г. Карл Цейс внедрил водно-иммерсионные объективы Аббе. В тогдашнем каталоге Цейса предлагались 3 объектива, которые все имели угол поля зрения 180°. Они имели различные рабочие расстояния, но постоянную числовую апертуру 1,0; объектив № 3 имел коррекционное кольцо, компенсирующее сферическую аберрацию.

В 1871 г. Толл представил новое открытие: для однородной (масляной) иммерсии он использовал иммерсионную среду Канадский бальзам, который имеет такой же показатель преломления, что и обычно используемое тогда стекло крон. В августе 1873 г. он изготовил трёхлинзовый объектив для однородной масляной иммерсии с числовой апертурой А = 1,25. Это достижение было признано рекордом для микроскопов. Но в том же месяце рассчитанный им объектив для глицериновой иммерсии достиг числовой апертуры А = 1,27.

С августа 1877 года Карл Цейс начал изготовление масляно-иммерсионных объективов Aббe. Именно они стали наиболее известны как объективы для «масляной» иммерсии. В 1879 году, в докладе на Йенском медицинском и естественно-научном обществе Эрнст Аббе сообщил, что на созданную им концепцию масляно-иммерсионных объективов повлияла работа Дж. В. Стивенсона.

В 1879 году Эрнст Аббе подвёл итоги разработки иммерсионных систем и своих экспериментов в статье «Новые методы для улучшения сферической коррекции» (On New Methods for Improving Spherical Correction), опубликованной в журнале «Royal Microscopical Society». Главное сделанное им дополнение заключалось в том, что однородные иммерсионные системы позволяют получить максимальную апертуру при любых доступных оптических материалах.

Роберт Кох стал одним из первых исследователей, применивших масляно-иммерсионные объективы Аббе и систему конденсоров Аббе.

В 1904 г. предприятия Карл Цейс изготовили 10-тысячный объектив для масляной иммерсии.

Техника работы

Масляная иммерсия

  • На готовый высушенный препарат наносят 20-25 мкл монтирующей жидкости
  • Покрывают препарат обезжиренным покровным стеклом
  • На покровное стекло наносят каплю иммерсионного масла, и наблюдают с иммерсионным объективом (маркировка — чёрная полоса ближе к фронтальному компоненту).

Водная иммерсия

  • На готовый препарат наносят каплю 20 м/моль фосфатного буфера, рН 7,4
  • Микроскопируют объективом для водной иммерсии (маркировка — белая полоса ближе к фронтальному компоненту)

Значение

  • Введение в микроскопию иммерсионных объективов (водная иммерсия, 1850, масляная, 1878) имело большое значение для цитологии, позволило решительно увеличить контраст изображения отдельных частей клетки.[2]

Примечания

Источники

Эта страница в последний раз была отредактирована 28 августа 2022 в 11:32.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).