Запрещённая зо́на — область значений энергии, которыми не может обладать электрон в идеальном (бездефектном) кристалле. Данный термин используется в физике твёрдого тела. Ширину запрещённой зоны обозначают (от англ.: g = gap — «промежуток», «зазор») и обычно численно выражают в электрон-вольтах.
Величина параметра различна для разных материалов, она во многом определяет их электрические и оптические свойства. По ширине запрещённой зоны твёрдые вещества разделяют на проводники — тела, где запрещённая зона отсутствует, то есть электроны могут иметь произвольную энергию, полупроводники — в этих веществах величина составляет от долей эВ до 3—4 эВ и диэлектрики — с шириной запрещённой зоны более 4—5 эВ (граница между полупроводниками и диэлектриками условная).
Как эквивалент термина «запрещённая зона» иногда применяется словосочетание «энергетическая щель»; использовать прилагательное «запретная» вместо «запрещённая» не принято.
Основные сведения
В твёрдом теле зависимость энергии электрона от его волнового вектора имеет сложный вид, отличающийся от известного соотношения для вакуума, причём всегда наличествуют несколько ветвей . Согласно зонной теории, образуются диапазоны энергий, где любой энергии отвечает хотя бы одно состояние , и разделяющие их диапазоны, в которых состояний нет. Первые называются «разрешёнными зонами», вторые — «запрещёнными».
Основной интерес представляют диапазоны вблизи энергии Ферми, поэтому обычно рассматривается ровно одна запрещённая зона, разделяющая две разрешённые, нижняя из них — валентная, а верхняя — зона проводимости. При этом как валентная зона, так и зона проводимости могут создаваться сразу несколькими ветвями
Валентная зона почти полностью заполнена электронами, в то время как зона проводимости почти пуста. Переход электронов из валентной зоны в зону проводимости происходит, например, при нагреве или под воздействием внешнего освещения.
Материал | Форма | Энергия в эВ | |
---|---|---|---|
0 K | 300 K | ||
Химические элементы | |||
C (в форме алмаза) |
непрямая | 5,4 | 5,46—6,4 |
Si | непрямая | 1,17 | 1,11 |
Ge | непрямая | 0,75 | 0,67 |
Se | прямая | 1,74 | |
Типа АIVВIV | |||
SiC 3C | непрямая | 2,36 | |
SiC 4H | непрямая | 3,28 | |
SiC 6H | непрямая | 3,03 | |
Типа АIIIВV | |||
InP | прямая | 1,42 | 1,27 |
InAs | прямая | 0,43 | 0,355 |
InSb | прямая | 0,23 | 0,17 |
InN | прямая | 0,7 | |
In<sub>x</sub>Ga<sub>1-x</sub>N | прямая | 0,7—3,37 | |
GaN | прямая | 3,37 | |
GaP 3C | непрямая | 2,26 | |
GaSb | прямая | 0,81 | 0,69 |
GaAs | прямая | 1,42 | 1,42 |
AlxGa1-xAs | x<0,4 прямая, x>0,4 непрямая |
1,42-2,16 | |
AlAs | непрямая | 2,16 | |
AlSb | непрямая | 1,65 | 1,58 |
AlN | 6,2 | ||
Типа АIIВVI | |||
TiO2 | 3,03 | 3,2 | |
ZnO | прямая | 3,436 | 3,37 |
ZnS | 3,56 | ||
ZnSe | прямая | 2,70 | |
CdS | 2,42 | ||
CdSe | 1,74 | ||
CdTe | прямая | 1,45 | |
CdS | 2,4 | ||
Типа АIVВVI | |||
PbTe | прямая | 0,19 | 0,31 |
Ширина запрещённой зоны
Ширина запрещённой зоны — разность энергий электронов между дном (состоянием с минимальной возможной энергией) зоны проводимости и потолком (состоянием с максимальной возможной энергией) валентной зоны.
Ширина запрещённой зоны (или, что то же самое, — минимальная энергия, необходимая для перехода электрона из валентной зоны в зону проводимости) составляет от нескольких сотых до нескольких электрон-вольт для полупроводников и свыше 4—5 эВ для диэлектриков. Некоторые авторы считают материал диэлектриком при эВ[1]. Полупроводники с шириной запрещённой зоны менее ~0,3 эВ принято называть узкозонными полупроводниками, полупроводники с величиной более ~3 эВ — широкозонными полупроводниками.
Величина может оказаться равной нулю. При для возникновения электронно-дырочной пары не требуется энергия — поэтому концентрация носителей (а с ней и электропроводность вещества) оказывается отличной от нуля при сколь угодно низких температурах, как в металлах. Такие вещества (серое олово, теллурид ртути и др.) относятся к классу полуметаллов.
Для большинства материалов незначительно уменьшается с температурой (см. табл.). Была предложена эмпирическая формула, описывающая температурную зависимость ширины запрещённой зоны полупроводника:
- ,
где — ширина при нулевой температуре, а и — константы данного материала[2].
Значимость параметра Eg
Величина определяет собственную проводимость материала и её изменение с температурой:
где — постоянная Больцмана, если ширина запрещённой зоны выражена в эВ, то 8,617 333 262... ⋅10−5 эВ·К−1.
Кроме того, определяет положение края поглощения света в конкретном веществе:
При меньших, чем , частотах падающего света коэффициент его поглощения крайне мал[3]. При поглощении фотона электрон переходит из валентной зоны в зону проводимости. Возможен также обратный переход с испусканием фотона или безызлучательный переход из зоны проводимости в валентную зону.
Прямые и непрямые переходы
Полупроводники, переход электрона в которых между зоной проводимости и валентной зоной не сопровождается изменением импульса (прямой переход), называются прямозонными. Среди них — арсенид галлия. Чтобы прямые переходы при поглощении/испускании фотона с энергией были возможны, состояниям электрона в минимуме зоны проводимости и максимуме валентной зоны должен соответствовать один и тот же импульс (волновой вектор ); чаще всего это .
Полупроводники, переход электрона в которых из зоны проводимости в валентную зону или наоборот сопровождается изменением импульса (непрямой переход), называются непрямозонными. При этом в процессе поглощения энергии, кроме электрона и фотона, должна участвовать ещё и третья частица (например, фонон), которая заберёт часть импульса на себя. Такие процессы менее вероятны, нежели прямые переходы. К непрямозонным полупроводникам относятся в том числе кремний и германий.
Наличие прямых и непрямых переходов объясняется зависимостью энергии электрона от его импульса. При излучении или поглощении фотона при таких переходах общий импульс системы электрон-фотон или электрон-фотон-фонон сохраняется согласно закону сохранения импульса[3].
Методы определения Eg
Для теоретических расчетов зонной структуры материалов существуют методы квантовой теории, такие как метод ЛКАО или метод псевдопотенциала, но достигаемая точность для не превышает ~ 0.5 эВ и недостаточна для практических целей (нужна точность порядка сотых долей эВ).
Экспериментально величина находится из анализа физических эффектов, связанных с переходом электронов между зоной проводимости и валентной зоной полупроводника. А именно, может быть определена из температурного хода электросопротивления или коэффициента Холла в области собственной проводимости, а также из положения края полосы поглощения и длинноволновой границы фотопроводимости. Значение иногда оценивается из измерений магнитной восприимчивости, теплопроводности и опытов по туннелированию при низкой температуре[4].
См. также
Примечания
- ↑ Сивухин Д. В. Общий курс физики 3 том / ФИЗМАТЛИТ. — Москва: Изд-во МФТИ, 1989. — С. 427. — 656 с.
- ↑ Varshni, Y.P. (January 1967). "Temperature dependence of the energy gap in semiconductors". Physica. 34 (1): 149—154. Bibcode:1967Phy....34..149V. doi:10.1016/0031-8914(67)90062-6.
- ↑ 1 2 Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников М.: «Наука» 1990 г.
- ↑ А. Г. Глущенко, С. В. Жуков. Материалы и оптические элементы в фотонике. Конспект лекций (лекция 16, с. 210-211) . ГОУВПО ПГУТИ, Самара (2010). Дата обращения: 30 апреля 2021. Архивировано 3 мая 2021 года.
Литература
- Игнатов А. Н. Оптоэлектронные приборы и устройства ЭКОТРЕНДЗ, Москва 2006
Обычно почти сразу, изредка в течении часа.