Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Диаграммы Венна законов де Моргана
Диаграммы Венна законов де Моргана
Представление правил де Моргана через логические элементы
Представление правил де Моргана через логические элементы

Законы де Мо́ргана (правила де Мо́ргана) — логические правила, связывающие пары логических операций при помощи логического отрицания. Названы в честь шотландского математика Огастеса де Моргана. В краткой форме звучат так:

Отрицание конъюнкции есть дизъюнкция отрицаний.
Отрицание дизъюнкции есть конъюнкция отрицаний.

Определение

Огастес де Морган первоначально заметил, что в классической пропозициональной логике справедливы следующие соотношения:

не (a и b) = (не a) или (не b)
не (a или b) = (не a) и (не b)

Символьно это можно записать так:

000 или по-другому: 000


В теории множеств:

000 или по-другому: 000

Эти правила также действительны для множества элементов (семейств):

00000 и 00000 .

В исчислении предикатов:

Следствия:

Используя законы де Моргана, можно выразить конъюнкцию через дизъюнкцию и три отрицания. Аналогично можно выразить дизъюнкцию:

В виде теоремы:

Если существует суждение, выраженное операцией логического умножения двух или более элементов, т. е. операцией «и»: , то для того, чтобы найти обратное от всего суждения, необходимо найти обратное от каждого элемента и объединить их операцией логического сложения, т. е. операцией «или»: . Закон работает аналогично в обратном направлении: .

Применение

Законы де Моргана применяются в таких важных областях, как дискретная математика, электротехника, физика и информатика; например, используются для оптимизации цифровых схем посредством замены одних логических элементов другими.

История

  • «Противоречащая противоположность дизъюнктивного суждения — конъюнктивное суждение, составленное из противоречащих противоположностей частей дизъюнктивного суждения (The contradictory opposite of a disjunctive proposition is a conjunctive proposition composed of the contradictories of the parts of the disjunctive proposition)» (Уильям Оккам, Summa Logicae).

См. также

Ссылки

Эта страница в последний раз была отредактирована 16 апреля 2021 в 13:07.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).