Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Задача о марьяже или задача о стабильных браках[1] — математическая задача из области кооперативных игр. Требуется найти стабильные соответствия между элементами двух множеств, имеющих свои предпочтения. В более простой формулировке: составить брачные пары из женихов и невест таким образом, чтобы мужа из одной семьи и жену из другой не тянуло друг к другу сильнее, чем к своим законным супругам[2]. Решение задачи отмечено Нобелевской премией по экономике 2012 года.

Решение задачи было описано в 1962 году математиками Дэвидом Гэйлом и Ллойдом Шепли[3]. Набор правил, следование которым всегда приводит к образованию стабильных пар, получил название алгоритма Гэйла — Шепли или «алгоритма отложенного согласия».

Множество практических механизмов на основе алгоритма Гэйла — Шепли разработал нобелевский лауреат Элвин Рот. Эти механизмы были внедрены в деятельность больниц по набору врачей[4] и интернов[5], в правила многих американских профессиональных спортивных ассоциаций по набору спортсменов в команды[6]. В соответствии с предложенными институциональными механизмами фирмы набирают на стажировку сотрудников[7], суды нанимают секретарей[8], родители находят подходящие школы для детей[9]. Модель марьяжа в целом описывает последовательность действий индивидов при формировании пар на «рынках попутчиков» для совместных поездок, в некоторых видах спорта (парное фигурное катание, спортивные танцы), поведение участников в интерактивных реалити-шоу и пр.[10]

Формулировка

Задачу можно сформулировать следующим образом:

Пусть даны два множества M и Ж, причём для каждого элемента из М элементы из Ж отсортированы в некотором порядке. То есть мы можем говорить, какие элементы Ж для данного элемента m из М являются более предпочтительными, а какие менее. Сортировки, конечно же, для каждого элемента могут быть свои. Аналогичные предпочтения введены и для элементов из Ж. Суть задачи сводится к разбиению M и Ж на пары. В каждую пару берется по одному элементу из M и из Ж. При этом в результате мы должны получить не просто разбиение, а так называемое стабильное разбиение. Стабильность — общее понятие для теории игры, которое в данном конкретном случае означает, что отсутствуют пары (m, ж) и (m', ж'), обладающие таким свойством: для m элемент ж' является предпочтительнее ж, а для ж' элемент m является предпочтительнее m'.

Андрей Коняев. Давай поженимся. // Lenta.ru 15.10.2012

Решение

Существует конструктивный метод нахождения одного из решений задачи.

  • мужчины делают предложение наиболее предпочитаемой женщине;
  • каждая женщина из всех поступивших предложений выбирает наилучшее и отвечает на него «может быть», на все остальные отвечает «нет»;
  • мужчины, получившие отказ, обращаются к следующей женщине из своего списка предпочтений, мужчины, получившие ответ «может быть», ничего не делают;
  • если женщине пришло предложение лучше предыдущего, то она прежнему претенденту (которому ранее сказала «может быть») говорит «нет», а новому претенденту говорит «может быть»;
  • если женщине пришло наилучшее предложение, то она прежнему претенденту (которому ранее сказала «может быть») говорит «нет», а новому претенденту говорит «да» и далее предложений не принимает;
  • шаги повторяются, пока у всех мужчин не исчерпается список предложений, в этот момент женщины отвечают «да» на те предложения «может быть», которые у них есть в настоящий момент.

Максимальное количество шагов для реализации алгоритма: шагов, где  — число мужчин и женщин[11].

Свойства решения

В результате невозможно завести новый брак — если у мужчины А в списке есть женщина Б и наоборот, хотя бы один женится. Соответственно, если списки полные, женятся все мужчины или выходят замуж все женщины.

Аналогично женщины могут ходить по мужчинам. Совпадают ли получившиеся браки? Не обязательно, и контрпример прост. Пусть есть два мужчины и две женщины. Андрей предпочитает Веру, Борис — Галю. Женщины наоборот — Вера Бориса, Галя Андрея (но и на другом жениться или выйти замуж за другого все четверо не прочь). Если мужчины ходят по женщинам — Андрей женится на Вере, Борис на Гале. Если женщины по мужчинам — Андрей на Гале, Борис на Вере.

При этом, если мужчины делают предложения женщинам, мужчины получат самый лучший для себя результат из всех устойчивых паросочетаний: не существует устойчивого паросочетания, чтобы все мужчины оказались в том же или лучшем положении. Мало того, алгоритм слабо стоек к мужским коалициям: несколько мужчин не могут скоординированно изменить списки предпочтения, чтобы путём эксплуатации этого алгоритма строго улучшить результат всем членам коалиции[12]. Улучшить хотя бы одному и не ухудшить остальным коалиция иногда способна[13].

Для женщин результат, наоборот, будет наихудшим: не существует устойчивого паросочетания, чтобы все женщины оказались в том же или худшем положении. Алгоритм не стоек к женским коалициям: если в предыдущем примере Вера откажется от Андрея, а Галя от Бориса, женщины найдут себе оптимальную пару.

Подобные задачи

  • обобщение на неравное число партнёров;
  • задача о выборе учебного заведения (в одно заведение может поступить несколько студентов);
  • задача о соседях по комнате — вместо двух множеств (мужчин и женщин) имеется только одно множество;
  • когда среди врачей возникают браки, и супругам хочется работать в одной больнице.

Реализация в программировании

Пример на языке Си:

#include"conio.h"
#include"stdio.h"

int make_offer(int);

const int n = 5 + 1; // dlya matritsy 5x5

int mass_index[n];  //massiv tekuschego indeksa muzhchin
int mass_offer[n];  // massiv tekuschih predlozheniy zhenschin
int massA[n][n],massB[n][n];
int global_i;

void main(){
	int i,j,offer,count,count_0=0;

	for (i=1;i<n;i++){mass_index[i] = 1; mass_offer[i] = -1;};

	FILE *f;

	f = fopen("input.txt","r");
	for (i=1; i<n; i++)
		for (j=1; j<n; j++)
			fscanf(f,"%d", &massA[i][j]);
	
	for (i=1; i<n; i++)
		for (j=1; j<n; j++)
			fscanf(f,"%d", &massB[i][j]);
	fclose(f);

	global_i = 1;
	
	int x;
	while (count_0 != n-1){
		x = make_offer(global_i);
		if (x == 0){
			count_0++;
			global_i = count_0 + 1;
		}
		else global_i = x;  
	}

	for (i=1; i<n; i++)
		printf("%d - %d \n", i, mass_offer[i] );

	getch();
}

int make_offer(int count){
		int offer, i;
		
		offer = massA[count][mass_index[count]];
		if (mass_offer[offer] == -1){
			mass_offer[offer] = count;
			return 0;
		}
		else{
			for (i=1; i<n; i++){
				if ((massB[offer][i] == mass_offer[offer]) | (massB[offer][i] == count))
					if (massB[offer][i] == mass_offer[offer]){ 
						mass_index[count]++;
						return count; 
					}
					else{ 
						int x = mass_offer[offer];
						mass_index[mass_offer[offer]]++;
						mass_offer[offer] = count;
						return x; 

					}
			}
		}
}

См. также

Примечания

  1. Вирт Н. 3.6. Задача о стабильных браках // Алгоритмы и структуры данных. — М. : «ДМК Пресс», 2010. — С. 154. — 272 с. — ISBN 978-5-94074-584-6.
  2. Андрей Коняев. Давай поженимся. Нобелевскую премию по экономике дали за стабильность выбора Архивная копия от 25 декабря 2012 на Wayback Machine // Lenta.ru 15.10.2012, 21:12:16
  3. D. Gale and L. S. Shapley: «College Admissions and the Stability of Marriage», American Mathematical Monthly 69, 9-14, 1962.
  4. Roth, Alvin E. and Peranson, Eliott. The Redesign of the Matching Market for American Physicians: Some Engineering Aspects of Economic Design // American Economic Review. — 1990. — № 89. — С. 748—780.
  5. Roth Alvin E. The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory // Journal of Political Economy. — 1984. — № 92. — С. 991—1016.
  6. Frechette, Guilaume; Alvin E. Roth; and M. Utku Unver. Unraveling Yields Inefficient Matchings: Evidence from Post-Season College Football Bowls // Rand Journal of Economics. — 2007. — № 38. — С. 967—982.
  7. Roth, Alvin E. A Natural Experiment in the Organization of Entry Level Labor Markets: Regional Markets for New Physicians and Surgeons in the UK // American Economic Review. — 1991. — № 81. — С. 415—440.
  8. Haruvy, Ernan; Alvin E. Roth, and M. Utku Unver. The Dynamics of Law Clerk Matching: An Experimental and Computational Investigation of Proposals for Reform of the Market // Journal of Economic Dynamics and Control. — 2006. — № 30(3). — С. 457—486.
  9. Ergin, Haluk and Tayfun Sonmez. Games of School Choice under the Boston Mechanism // Journal of Public Economics. — 2005. — № 90. — С. 215—237.
  10. Барбашин М. Ю. Институты и идентичность: методологические возможности теории институционального распада в современных социальных исследованиях // Журнал социологии и социальной антропологии. — 2014. — Т. XVII, № 4(75). — С. 178—188. Архивировано 2 апреля 2015 года.
  11. Iwama, Kazuo (2008). "A Survey of the Stable Marriage Problem and Its Variants" (PDF). International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008): 131—136. doi:10.1109/ICKS.2008.7. Архивировано (PDF) из оригинала 12 августа 2021. Дата обращения: 12 августа 2021.
  12. Dubins, L. E. (1981). "Machiavelli and the Gale–Shapley algorithm". American Mathematical Monthly. 88 (7): 485—494. doi:10.2307/2321753.
  13. Huang, Chien-Chung (2006). "Cheating by men in the Gale-Shapley stable matching algorithm". In Azar, Yossi; Erlebach, Thomas (eds.). Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13, 2006, Proceedings. Lecture Notes in Computer Science. Vol. 4168. Springer. pp. 418—431. doi:10.1007/11841036_39. MR 2347162.

Литература

  • Abdulkadiroglu, Atila and Tayfun Sonmez. School Choice: A Mechanism Design Approach. — American Economic Review, 2003. — Т. 93. — С. 729—747.
  • Dubins L.E. and Freedman D.A. Machiavelli and the Gale-Shapley Algorithm. — American Mathematical Monthly, 1981. — Т. 88. — С. 485—494.
  • Gusfield, Dan and Robert W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press.Immorlice, Nicole and Mohammad Mahdian. Marriage, Honesty and Stability. — SODA, 2005. — С. 53—62.
  • Irving R.W. Greedy Matchings. — University of Glasgow, Computing Science Department Research Report, 2003. — С. 136.
  • Kagel .J.H. and Roth A.E. The Dynamics of Reorganization in Matching Markets: A Laboratory Experiment, Motivated by a Natural Experiment. — Quarterly Journal of Economics, 2000. — Т. 115. — С. 201—235.
  • Kelso Alexander S. Jr., Crawford Vincent P. Job Matching, Coalition Formation, and Cross Substitutes. — Econometrica. — Т. 50. — С. 1483—1504.
  • Mongell S. Sorority Rush as a Two-Sided Matching Mechanism: A Game-Theoretic Analysis. — Department of Economics, University of Pittsburgh, 1988.
  • Niederle, Muriel and Alvin E. Roth. Unraveling Reduces Mobility in a Labor Market: Gastroenterology with and without a Centralized Match. — Journal of Political Economy, 2003. — Т. 111(6). — С. 1342—1352.
  • Roth A.E. and Sotomayor, M. The College Admissions Problem Revisited. — Economelrica. — Т. 57. — С. 559—570.
  • Roth Alvin E. and Xiaolin Xing. Turnaround Time and Bottlenecks in Market Clearing: Decentralized Matching in the Market for Clinical Psychologists. — Journal of Political Economy, 1997. — Т. 105.
  • Roth, Alvin E. On the Allocation of Residents to Rural Hospitals: A General Property of Two-Sided Matching Markets. — Econometrica, 1986. — Т. 54(2). — С. 425—427.
  • Roth, Alvin E. The National Residency Matching Program as a Labor Market. — Journal of the American Medical Association, 1996. — Т. 275. — С. 1054—1056.
  • Roth, Alvin E. Deferred Acceptance Algorithms: History, Theory, Practice, and Open Questions. — International Journal of Game Theory, Special Issue in Honor of David Gale on his 85th birthday. — Т. 36. — С. 537—569.
  • Roth, Alvin E. The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory. — Journal of Political Economy, 1984. — Т. 92. — С. 991—1026.
  • Roth, Alvin E. The Origins, History, and Design of the Resident Match. — Journal of American Medical Association, 2003. — Т. 289. — С. 909—912.
  • Wallis, C. Bradley, Kannan P. Samy, Alvin E. Roth, and Michael A. Rees. Kidney Paired Donation. — Nephrology Dialysis Transplantation, 2011. — Т. 26(7). — С. 2091—2099.

Ссылки

Эта страница в последний раз была отредактирована 16 декабря 2023 в 18:25.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).