Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Длина модуля — способ измерения «размера» модуля, обобщающий понятие размерности векторного пространства. Длина определяется как максимальная длина цепочки вложенных подмодулей.

Определение

Пусть M — (левый или правый) модуль над кольцом R. Мы говорим что длина цепочки его подмодулей вида

равна n, то есть считаем число строгих включений, а не число подмодулей. Длина модуля M — это наибольшая длина цепочки среди всех цепочек его подмодулей. Если наибольшей длины цепочки не существует, длина M равна бесконечности.

Примеры

  • Единственный модуль длины 0 — нулевой модуль. Модули длины 1 называются простыми.
  • Для конечномерного векторного пространства длина совпадает с размерностью.
  • Длина циклической группы равна числу множителей в разложении n на простые.

Свойства

Модуль имеет конечную длину тогда и только тогда, когда он является артиновым и нётеровым.

Пусть

является короткой точной последовательностью модулей. В этом случае M имеет конечную длину тогда и только тогда, когда L и N имеют конечную длину, причём длина M равна сумме их длин. В частности, длина прямой суммы модулей равна сумме длин компонент.

Литература

Эта страница в последний раз была отредактирована 26 февраля 2022 в 08:46.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).