Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Дробное интегро-дифференцирование

Из Википедии — свободной энциклопедии

Дробное интегро-дифференцирование в математическом анализе — объединённый оператор дифференцирования/интегрирования, порядок которого может быть произвольным вещественным или комплексным числом. Используется в дробном математическом анализе. Сам по себе оператор служит для обозначения операции взятия производной/интеграла дробного порядка.

Обычно оператор обозначается следующим образом:

Определения

Три наиболее употребительных формулы:

Самая простая и часто употребляемая формулировка. Эта формула является обобщением до произвольного порядка формулы повторного интегрирования Коши.
 
где .
 
Формально похоже на интегро-дифференцирование Римана — Лиувилля, но распространяется на периодические функции с равным нулю интегралом по периоду.

Определения через преобразования

Обозначим непрерывное преобразование Фурье, как :

В Фурье-пространстве дифференцированию соответствует произведение:

Поэтому,

что сводится к

При преобразовании Лапласа, здесь обозначенном , дифференцирование заменяется умножением

Обобщая для произвольного порядка дифференцирования и решая уравнение относительно , получаем

Основные свойства

  • Линейность:
  • Правило нуля:
  • Дробное интегро-дифференцирование произведения:
  • Полугрупповое свойство:

в общем случае не выполняется[1].

Некоторые важные формулы

См. также

Ссылки

  • Тарасов В. Е. Модели теоретической физики с интегро-дифференцированием дробного порядка. — Москва, Ижевск: РХД, 2011. — 568 с.

Журналы

Примечания

  1. см. Свойство 2.4 (стр. 75) в книге Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations. — Elsevier, 2006.
Эта страница в последний раз была отредактирована 5 апреля 2020 в 08:57.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).