Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Дифференцирование (алгебра)

Из Википедии — свободной энциклопедии

Дифференцирование в алгебре — операция, обобщающая свойства различных классических производных и позволяющая ввести дифференциально-геометрические идеи в алгебраическую геометрию. Изначально это понятие было введено для исследования интегрируемости выражений в элементарных функциях алгебраическими методами.

Кольцо, поле, алгебра, оснащённые дифференцированием, называются дифференциальным кольцом, дифференциальным полем, дифференциальной алгеброй соответственно.

Определение

Пусть  — алгебра над кольцом . Дифференцирование алгебры  — это -линейное отображение , удовлетворяющее тождеству Лейбница:

В более общем случае дифференцирование коммутативной со значениями в -модуле  — это -линейное отображение , удовлетворяющее тождеству Лейбница. В этом случае называют дифференциальным модулем над Множество всех дифференцирований со значениями в обозначается (, ) и является -модулем. Функтор является представимым, его представляющий объект обозначается или и называется модулем кэлеровых дифференциалов. является начальным объектом в категории дифференциальных модулей над , то есть существует такое дифференцирование , что любое дифференцирование пропускается через :

Свойства

имеет естественную структуру алгебры Ли: .

Любое дифференцирование является дифференциальным оператором первого порядка (в смысле коммутативной алгебры). Более того, если  — алгебра с единицей, то для любого -модуля выполнено:

,

где  — модуль дифференциальных операторов 1 порядка из в .

является функтором из в .

Градуированное дифференцирование

Для -градуированной алгебры с градуировкой элемента , обозначаемой , аналогом дифференцирования являются градуированные дифференцирования, порождённые однородными отображениями степени , удовлетворяющими следующему градуированному тождеству Лейбница ():

Если , то градуированные дифференцирования совпадают с обычными. Если , то их обычно называют супердифференцированиями. Супердифференцирования образуют супералгебру Ли относительно суперкоммутатора:

.

Примерами супердифференцирований являются внешнее и внутреннее дифференцирование на кольце дифференциальных форм.

Литература

Эта страница в последний раз была отредактирована 27 ноября 2023 в 18:17.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).