Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Дифференцирование тригонометрических функций

Из Википедии — свободной энциклопедии

Функция синуса и косинуса в единичном круге
Функция Производная

Дифференцирование тригонометрических функций — математический процесс нахождения производной тригонометрической функции или скорости её изменения по отношению к переменной. Например, производная функции синуса записывается как sin′(a) = cos(a), что означает, что скорость изменения sin(x) под определённым углом x = a задаётся косинусом этого угла.

Все производные круговых тригонометрических функций могут быть найдены из производных sin(x) и cos(x) с помощью правила частного[en], применяемого к таким функциям, как tan(x) = sin(x)/cos(x). Зная эти производные, можно производные от обратных тригонометрических функций найти с помощью неявного дифференцирования.

Все указанные функции непрерывны и дифференцируемы в своей области определения[1].

Доказательства производных тригонометрических функций

Предел sin(θ)/θ при стремлении θ к 0

Круг с центром O и радиусом r
(r = OK = OA)

На диаграмме справа показан круг с центром O и радиусом r = 1. Пусть два радиуса OA и OK образуют дугу в θ радиан. Поскольку мы рассматриваем предел, когда θ стремится к нулю, мы можем предположить, что θ — это небольшое положительное число, скажем, 0 < θ < ½ π в первом квадранте.

На схеме пусть R1 будет треугольником OAK, R2круговым сектором OAK и R3 — треугольником OAL. Тогда площадь треугольника OAK:

Площадь кругового сектора OAK — это , а площадь треугольника OAL определяется как

Поскольку каждый объект содержится в следующем, мы имеем:

Более того, поскольку sin θ > 0 в первом квадранте, мы можем разделить на ½ sin θ, получив:

На последнем этапе мы взяли обратно три положительных члена, изменив неравенство.

Мы пришли к выводу, что для 0 < θ < ½ π выражение sin(θ)/θ будет всегда меньше 1 и всегда больше cos(θ). Таким образом, чем ближе θ к 0, тем сильнее sin(θ)/θ становится "сжатым" между потолком на высоте 1 и полом на высоте cos θ, который стремится к 1; следовательно, sin(θ)/θ стремится к 1, когда θ стремится к 0 с положительной стороны:

Для случая, когда θ — это небольшое отрицательное число -½ π <θ <0, мы используем тот факт, что синус — это нечётная функция:

Предел (cos(θ)-1)/θ при стремлении θ к 0

Последний раздел позволяет нам относительно легко рассчитать этот новый предел. Это делается простым трюком. В этом расчёте знак θ неважен.

С использованием cos2θ – 1 = –sin2θ, факт, что предел произведения является произведением пределов, а предельный результат из предыдущего раздела, мы находим, что:

Предел tan(θ)/θ при стремлении θ к 0

Используя предел для функции синуса и то, что функция тангенс нечётна и предел произведения является произведением пределов, мы находим:

Производная функции синуса

Из определения производной

Мы рассчитываем производную функции синуса из определения предела:

Используя формулы сложения углов sin(α+β) = sin α cos β + sin β cos α, мы имеем:

Использование пределов для функций синуса и косинуса:

Из производной гиперболических функций

Если использовать гиперболические функции, то формально можно получить, что:

,

т.к.

Производная функции косинуса

Из определения производной

Мы снова вычисляем производную функции косинуса из определения предела:

Используя формулу сложения углов cos(α+β) = cos α cos β – sin α sin β, мы имеем:

Использование пределов для функций синуса и косинуса:

Из производной гиперболических функций

Если использовать гиперболические функции, то формально можно получить, что:

Из цепного правила

Чтобы вычислить производную функции косинуса из цепного правила, сначала обратите внимание на три следующих факта:

Первое и второе — это тригонометрические тождества, а третье доказано выше. Используя эти три факта, мы можем написать следующее:

Мы можем дифференцировать это, используя цепное правило. Положив , мы имеем:

.

Таким образом, мы доказали, что

.

Производная функции тангенса

Из определения производной

Чтобы вычислить производную функции тангенса tan θ, мы используем первые принципы. По определению:

Используя известную формулу угла tan(α+β) = (tan α + tan β) / (1 - tan α tan β), мы имеем:

Используя тот факт, что предел произведения является произведением пределов:

Используя предел для функции тангенса и тот факт, что tan δ стремится к 0, поскольку δ стремится к 0:

Сразу видим, что:

Из производной гиперболических функций

Из правила частного

Также можно вычислить производную функции тангенса, используя правило частного:

Числитель можно упростить до 1 с помощью пифагорового тождества, что даёт нам:

Следовательно,

Доказательства производных обратных тригонометрических функций

Следующие производные можно найти, установив переменную y равной обратной тригонометрической функции, от которой мы хотим взять производную. Используя неявное дифференцирование и затем решая для dy/dx, производная обратной функции будет найдена в терминах y. Чтобы преобразовать dy/dx обратно в термины x, мы можем нарисовать эталонный треугольник на единичной окружности, положив θ равным y. Используя теорему Пифагора и определение обычных тригонометрических функций, мы наконец можем выразить dy/dx через x.

Дифференцирование функции арксинуса

Пусть

где

Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Подставляя сверху , имеем:

Подставляя сверху , имеем:

Из производной обратной гиперболической функции

Дифференцирование функции арккосинуса

Пусть

где

Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Подставляя сверху , получаем:

Подставляя сверху , получаем:

В качестве альтернативы, как только производная от установлена, производная от сразу следует путём дифференцирования тождества так, что .

Из производной обратной гиперболической функции

Дифференцирование функции арктангенса

Пусть

где

Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Левая сторона:

, используя пифагорово тождество

Правая сторона:

Следовательно,

Подставляя сверху , получаем:

Из производной обратной гиперболической функции

Дифференцирование функции арккотангенса

Пусть

где Тогда

Взяв производную по с обеих сторон и решив для , имеем:

Левая сторона:

, используя пифагорово тождество

Правая сторона:

Следовательно,

Подставляя , получаем:

Из производной обратной гиперболической функции

Дифференцирование функции арксеканса

Использование неявного дифференцирования

Пусть

Тогда

(Абсолютное значение в выражении необходимо, поскольку произведение секанса и тангенса в интервале y всегда неотрицательно, а радикал всегда неотрицателен по определению главного квадратного корня, поэтому оставшийся множитель также должен быть неотрицательным, что достигается за счёт использования абсолютного значения x.)

Использование цепного правила

В качестве альтернативы, производная арксеканса может быть получена из производной арккосинуса с использованием цепного правила.

Пусть

где

and

Тогда, применяя цепное правило к , имеем:

Дифференцирование функции арккосеканса

Использование неявного дифференцирования

Пусть

Тогда

(Абсолютное значение в выражении необходимо, поскольку произведение косеканса и котангенса в интервале y всегда неотрицательно, а радикал всегда неотрицателен по определению главного квадратного корня, поэтому оставшийся множитель также должен быть неотрицательным, что достигается за счёт использования абсолютного значения x.)

Использование цепного правила

В качестве альтернативы, производная арккосеканса может быть получена из производной арксинуса с использованием цепного правила.

Пусть

где

and

Тогда, применяя цепное правило к , имеем:

См. также

Примечания

  1. Производные тригонометрических функций. math24.ru. Math24. Дата обращения: 7 июля 2021. Архивировано 9 июля 2021 года.

Литература

Эта страница в последний раз была отредактирована 31 января 2024 в 17:27.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).