Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Дифференциальные операторы в различных системах координат

Из Википедии — свободной энциклопедии

Здесь приведён список векторных дифференциальных операторов в различных системах координат.

Общее выражение

Общее выражение для оператора ∇ в произвольной системе ортогональных координат можно записать так:

,

где "" - любой из трех значков, соответствующих действию оператора ∇:

  • " " - градиент;
  • " · " - дивергенция;
  • " × " - ротор.

Элементы в этой записи соответствуют элементам радиус-вектора в соответствующей системе координат:

Иначе говоря, первым действием является взятие частной производной по проекции радиус-вектора от всего вектора (с учетом производных орт в данной системе координат), и лишь потом умножение (простое для градиента, скалярное для дивергенции и векторное для ротора) орта направления на .

При этом достаточно знать выражения:

  • в цилиндрических координатах: и ;
  • в сферических координатах: , , , и .

Например: в приведенной ниже таблице запись дивергенции в цилиндрических координатах получена следующим образом:

Таблица операторов

Здесь используются стандартные физические обозначения. Для сферических координат, θ обозначает угол между осью z и радиус-вектором точки, φ — угол между проекцией радиус-вектора на плоскость x-y и осью x.

Запись оператора Гамильтона в различных системах координат
Оператор Прямоугольные координаты
(x, y, z)
Цилиндрические координаты
(ρ, φ, z)
Сферические координаты
(r, θ, φ)
Параболические координаты
(σ, τ, z)
Формулы преобразования координат
Радиус-вектор произвольной точки
Связь единичных векторов
.
Векторное поле
Градиент
Дивергенция
Ротор
Оператор Лапласа
Векторный оператор Лапласа ?
Элемент длины
Элемент ориентированной площади
Элемент объёма

Некоторые свойства

Выражения для операторов второго порядка:

  1. (Оператор Лапласа)
  2. (используя формулу Лагранжа для двойного векторного произведения)

См. также

Эта страница в последний раз была отредактирована 16 апреля 2022 в 19:45.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).