Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Дистилляция термокомпрессионная

Из Википедии — свободной энциклопедии

Дистилляция термокомпрессионная — способ дистилляции (перегонки), использующий принцип теплового насоса.

История проблемы

Дистилляция жидкостей — очень энергоёмкий процесс. Тепло конденсата может быть использовано для нагрева новых порций сырья, а вот энергия фазового перехода пропадает впустую. Однако, энергия парообразования (или конденсации) воды в 6,75 раз превышает энергию, необходимую для нагрева воды от 20°C до 100°C. Для использования энергии фазового перехода применяется технология теплового насоса.

Принцип действия

В термокомпрессионных дистилляторах (дистилляторах с паровым компрессором) рабочим телом теплового насоса является само дистиллируемое вещество.

Жидкость первоначально нагревается до кипения, образующийся пар нагнетается насосом в теплообменник. Пар конденсируется и отдаёт энергию на нагрев новой порции подаваемой на испарение жидкости. При этом жидкость-сырьё кипит при более низкой температуре, а продукт конденсируется при более высокой. Тепло конденсации поступает в испаритель и используется для перевода в пар новых порций сырья. В результате такой циркуляции тепла общие затраты энергии на перегонку снижаются во много раз.

Так, при температуре испарения 96 °C (полость низкого давления) и температуре конденсации 104 °C (полость повышенного давления), расход энергии на перегонку оказывается примерно в 50 раз меньше, чем при обычной перегонке. Увеличивая площадь теплопередачи и уменьшая толщину стенок теплообменника, можно снизить перепад температур и ещё больше увеличить экономичность работы дистиллятора.

После начала работы дистиллятор не нуждается в дополнительном нагреве и охлаждении. Всё устройство должно быть теплоизолированным. Результатом работы насоса является более тёплый по сравнению с сырьём дистиллят.

Применение

Данная технология принадлежит к энергосберегающим и у неё большое будущее. Возможные области применения:

  • фракционная перегонка в химической промышленности (в нефтеперегонке затраты энергии составляют до 50 % стоимости конечного продукта),
  • опреснение воды,
  • кристаллизация солей из рассолов,
  • разделение изотопов.

На сегодняшний день известны установки для дистилляции воды в фармацевтической промышленности. Они довольно сложны в эксплуатации, и экономия энергии не является главным критерием их применения. Постепенное испарение жидкости, без бурного кипения, позволяет получить чистый дистиллят после однократной перегонки.

В то же время, дистилляторы фирмы Potomac, судя по характеристикам, обладают очень высокой экономичностью и приличной производительностью.

Есть также установки химической промышленности, где компрессор, нагревает исходную смесь и компенсирует теплоту испарения, сжимая пар лёгкой фракции.

Недостатки

Описанная технология требует насосного оборудования и использует электрическую энергию.

Этот недостаток может считаться несущественным, поскольку удается добиться значительной экономии энергии по сравнению с обычной дистилляцией. К тому же, альтернативная энергетика в основном направлена на получение из ветра, солнечного тепла, энергии волн электричества. Атомная энергетика тоже преимущественно даёт электроэнергию. Использование тепла ядерного реактора в химии представляется проблематичным.

Для крупных установок имеет смысл заменить компрессор поршневой или роторный на осевой лопаточный. Помимо упрощения обслуживания, лопаточные машины имеют большую производительность и могут оказаться достаточно экономичными. Приводом машины может быть любой тепловой двигатель, в том числе сжигающий органическое топливо. В этом случае термокомпрессионная дистилляция также оказывается гораздо более выгодной, чем обычная.

Ссылки

  • Слесаренко В. Н., Современные методы опреснения морских и соленых вод, Москва, 1973, С.23

См. также

Эта страница в последний раз была отредактирована 12 марта 2023 в 15:05.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).