Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Детектор-независимое квантовое распределение ключей

Из Википедии — свободной энциклопедии

Детектор-независимое квантовое распределение ключей (en. Measurement-Device-Independent Quantum Key Distribution, MDI-QKD) — протокол квантового распределения ключей (QKD), главной особенностью которого является неуязвимость к атакам, эксплуатирующим неидеальность детекторов одиночных фотонов.

Предпосылки к созданию

Квантовое распределение ключей (QKD) позволяет двум сторонам (обычно называемым Алисой и Бобом) генерировать общую строку секретных битов, называемых секретным ключом, в присутствии перехватчика Евы[1]. Этот ключ может использоваться для таких задач, как безопасная связь и аутентификация. Однако между теорией и практикой QKD существует большой разрыв. Теоретически QKD предлагает безусловную безопасность, гарантированную законами физики. Однако практические реализации QKD редко соответствуют предположениям идеализированных моделей, используемых в доказательствах безопасности. Действительно, используя лазейки безопасности в практических реализациях, особенно несовершенство детекторов, были успешно реализованы различные атаки на коммерческие системы QKD, что подчеркивает их практическую уязвимость. Чтобы снова связать теорию с практикой, было предложено несколько подходов, одним из которых стал MDI-QKD[2].

Описание метода

Генерация ключа происходит, как и во всех протоколах квантовой криптографии, в две фазы.

Первая фаза - коммуникация через квантовый канал:

  1. И Алиса, и Боб готовят состояния слабо когерентных импульсов (WCPs), произвольно выбирая одну из четырех возможных поляризации BB84 (то есть вертикальное, горизонтальное, 45° и 135° поляризованных состояний), и отправляют их третьему, ненадежному, участнику Чарли (или Ева), который находится в середине. Так же Алиса и Боб применяют Метод состояний-ловушек (Decoy state method).
  2. Чарли выполняет измерение входящих состояний в базисе Белла, которое проецирует входящие сигналы в состояние Белла.

Вторая фаза - коммуникация через аутентифицированный публичный канал:

  1. Чарли объявляет о событиях, когда он получил успешный результат измерения, а также результат его измерения.
  2. Алиса и Боб сохраняют отправленные биты, которые соответствуют этим случаям и отбрасывают остальные. Как и в BB84, они выбирают события, где они использовали одинаковые базисы в своей передаче по квантовому каналу.
  3. Чтобы гарантировать, что их битовые строки правильно коррелированы, Алиса или Боб должны применить переворот бита к его или её данным, за исключением случаев, когда оба они выбрали диагональный базис, и Чарли получает успешный результат измерения, соответствующий триплетному состоянию.

Возможность считать Чарли ненадежным узлом и свободно передавать результаты измерений по публичному каналу достигается благодаря эффекту Хонга-У-Манделя. Он заключается в том, что одновременно приходящие от Алисы и Боба фотоны интерферируют в светоделителе 50:50, на каждом конце которого стоит поляризующий светоделитель, проектирующий входящие фотоны в горизонтальное или диагональное состояние. Измерение в базисе Белла само по себе дает информацию о запутанном состоянии двух фотонов, и только Алиса и Боб, зная свои отправленные состояния, могут определить отправленные друг другом состояния.

Доказательство криптостойкости метода MDI-QKD включает несколько допущений. Во-первых, предполагается, что Метод состояний-ловушек может быть использован для оценки полезный выход (англ. gain - вероятность того, что реле выдаст сигнал успешного измерения белловского состояния) и частоты ошибок по кубитам (QBER)[3]. Во-вторых, оценивается скорость генерации секретного ключа для реалистичной схемы[4]. Кроме того, предполагается, что все детекторы Чарли идентичны (т.е. они имеют одинаковые скорость темновых отсчетов и эффективность детектирования), и их темновые отсчеты не зависят от входящих сигналов.

Отличительные особенности MDI-QKD

Ключевым преимуществом метода является то, что детекторы Чарли могут быть произвольно повреждены без ущерба для безопасности. Также, из-за расположения Чарли в середине канала связи, максимальное расстояние между Алисой и Бобом удваивается в сравнении с классическими протоколами, такими как BB84[2].

Литература

  1. Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, Hugo Zbinden. Quantum cryptography // Reviews of Modern Physics. — 2002-03-08. — Т. 74, вып. 1. — С. 145–195. — DOI:10.1103/RevModPhys.74.145. Архивная копия от 16 апреля 2020 на Wayback Machine
  2. 1 2 Hoi-Kwong Lo, Marcos Curty, Bing Qi.Measurement-Device-Independent Quantum Key Distribution (англ.) // Physical Review Letters. — 2012-03-30. — Vol. 108, iss. 13. — P. 130503. — ISSN 1079-7114 0031-9007, 1079-7114. — DOI:10.1103/PhysRevLett.108.130503 Архивная копия от 28 апреля 2020 на Wayback Machine.
  3. Hoi-Kwong Lo, Xiongfeng Ma, Kai Chen. Decoy State Quantum Key Distribution // Physical Review Letters. — 2005-06-16. — Т. 94, вып. 23. — С. 230504. — doi:10.1103/PhysRevLett.94.230504.
  4. Daniel Gottesman, Hoi-Kwong Lo, Norbert Lütkenhaus, John Preskill. Security of quantum key distribution with imperfect devices // arXiv:quant-ph/0212066. — 2002-12-10. Архивировано 21 декабря 2019 года.
Эта страница в последний раз была отредактирована 29 апреля 2022 в 15:38.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).