Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Гиперболические числа

Из Википедии — свободной энциклопедии

Гиперболические числа, или двойны́е чи́сла, паракомпле́ксные чи́сла, расщепля́емые компле́ксные чи́сла, компле́ксные чи́сла гиперболи́ческого ти́па, контркомпле́ксные чи́сла[1] — гиперкомплексные числа вида «a + j · b», где a и b — вещественные числа и причём j ≠ ±1.

Определение

Алгебраическое определение

Любое гиперболическое число можно представить как упорядоченную пару вещественных чисел Сложение и умножение определяются по правилам:

Числа вида отождествляются с вещественными числами, а Тогда соответствующие тождества принимают вид:

Матричное представление

Гиперболические числа можно представить как матрицы из вещественных чисел, при этом сложению и умножению гиперболических чисел будут соответствовать сложение и умножение соответствующих матриц:

Арифметические операции

  • Сложение:
  • Вычитание:
  • Умножение:
  • Деление на число, не являющееся делителем нуля:

Свойства

где sh и ch — гиперболические синус и косинус.

Гиперболические числа образуют двумерную ассоциативно-коммутативную алгебру над полем вещественных чисел. Алгебра гиперболических чисел содержит делители нуля (то есть такие ненулевые элементы z и w, что zw = 0) и поэтому, в отличие от алгебры комплексных чисел, не является полем. Все делители нуля имеют вид

Если взять и то

и

Любое гиперболическое число может быть представлено как сумма где и  — вещественные числа. В таком представлении сложение и умножение производится покоординатно.

Таким образом, алгебра гиперболических чисел может быть разложена в прямую сумму двух полей вещественных чисел.

Применение

Гиперболические числа иногда применяются в релятивистской кинематике.

Примечания

Ссылки

Эта страница в последний раз была отредактирована 18 октября 2021 в 20:07.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).