Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Двойное отношение (или сложное отношение или устаревшее ангармоническое отношение) четвёрки чисел , , , (вещественных или комплексных) определяется как

Также встречаются обозначения и .

Свойства

  • Двойное отношение сохраняется при дробно-линейных преобразованиях, в частности не зависит от выбора координат на прямой.
    • В частности если двойное отношение четвёрки чисел равно , тогда двойное отношение любой из 24 перестановок четвёрки равно одному из следующих шести значений:

Вариации и обобщения

Двойным (или сложным) отношением четвёрки точек , , , , лежащих на одной (вещественной или комплексной) прямой, называют число

где через , , , обозначены координаты точек , , , соответственно. Двойное отношение не зависит от выбора координаты на прямой. Часто пишут также так:

подразумевая, что через (соответственно ) обозначено отношение направленных отрезков.

Двойным отношением четвёрки прямых , , , , проходящих через одну точку, называют число

знак которого выбирается следующим образом: если один из углов, образованных прямыми и , не пересекается ни с одной из прямых или (в этом случае говорят, что пара прямых и не разделяет пару прямых и ), то ; в противном случае .

  • Пусть четвёрка прямых , , , проходит через точку , а прямая не содержит . Предположим прямые , , , пересекаются с соответственно в точках , , и . Тогда

См. также

Ссылки

Эта страница в последний раз была отредактирована 19 декабря 2019 в 08:21.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).