Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Сила Кориолиса в гидроаэромеханике

Из Википедии — свободной энциклопедии

Гаспар-Гюстав де Кориолис

Си́ла Кориоли́са в гидроаэромеха́нике — одна из сил инерции, действующая на упорядоченный или флуктуационный поток жидкости или газа во вращающейся неинерциальной системе отсчёта[источник не указан 1591 день].

Задача геофизической и астрофизической гидродинамики состоит в физическом описании турбулентного течения жидкости (или газа) на вращающихся объектах. В геофизике естественно использовать систему координат, жестко связанную с вращающейся Землей. Такая система координат является неинерциальной. Для описания относительного движения в такой системе координат можно использовать систему уравнений гидромеханики Навье — Стокса[1], если в них ввести две дополнительные силы инерции — центробежную силу и силу Кориолиса[2].

Определение

В системе координат, вращающейся с угловой скоростью материальная точка, движущаяся с относительной скоростью участвует в сложном движении и, согласно теореме Кориолиса, приобретает добавочное поворотное ускорение, или кориолисово ускорение, равное векторному произведению . При этом считается, что псевдовектор направлен по оси вращения согласно правилу правого винта.

Если  — вектор относительной скорости потока жидкости или газа, обладающего плотностью то во вращающейся системе координат вектор силы Кориолиса, приходящийся на единицу объёма, равен

В гидроаэромеханике скорость потока и характеристики состояния вещества, в том числе плотность, подвержены флуктуациям разной природы — тепловое движение молекул, звуковые колебания, турбулентность. Влияние гидродинамических флуктуаций на динамику потока исследуется методами статистической гидромеханики. В статистической гидромеханике уравнения движения, описывающие поведение средних характеристик потока, в соответствии с методом О. Рейнольдса получаются путём осреднения уравнений Навье — Стокса[3]. Если, следуя методу О. Рейнольдса, представить где черта сверху — знак осреднения, а штрих — отклонения от среднего, то вектор осреднённой плотности импульса [3] приобретёт вид

где  — вектор плотности флуктуационного потока массы (или «плотность турбулентного импульса» [3]). Осредняя (1) и учитывая (2), получаем, что плотность осреднённой силы Кориолиса будет состоять из двух частей:

Таком образом, в турбулентной среде возникла вторая часть силы Кориолиса, называемая[кем?] «плотность турбулентной силы Кориолиса». Она приводит к появлению в гидродинамических явлениях дополнительных эффектов, отсутствующих в механике твердого тела.

Сила Кориолиса в физике атмосферы и океана

Циклон над Исландией 4 сентября 2003

Наиболее важную роль сила Кориолиса играет в глобальных геофизических процессах. Равновесие горизонтальной компоненты силы барического градиента и силы Кориолиса приводит к установлению потока, скорость которого направлена вдоль изобар (геострофический ветер). За исключением экваториальной зоны за пределами планетарного пограничного слоя движение атмосферы близко к геострофическому. Дополнительный учёт центробежной силы и силы трения дает более точный результат. Совместное действие этих сил приводит к формированию в атмосфере циклонов, в которых ветер вращается против часовой стрелки в Северном полушарии, оставляя область низкого давления слева от себя. В антициклоне, в центре которого находится область повышенного давления, вращение происходит в противоположном направлении[4]. В Южном полушарии направление вращения изменяется на противоположное.

Циклоны и антициклоны — это крупномасштабные вихри, участвующие в общей циркуляции атмосферы. В тропосфере в целом, под действием силы барического градиента и силы Кориолиса формируется общая циркуляция атмосферы. В каждом полушарии образуются по три циркуляционных ячейки: от экватора до широты 30° — ячейка Хэдли, примерно между 30° и 65° — ячейка Феррела, и в полярной области — Полярная ячейка. Атмосферная тепловая машина приводит эти шесть «колес» циркуляции во вращение. Сила Кориолиса, отклоняя ветер, циркулирующий в вертикальной плоскости, приводит к появлению пассатов — восточных ветров в нижней части атмосферы в тропическом поясе. Отклоняющее действие силы Кориолиса в ячейке Феррела приводит к преобладанию западных ветров умеренного пояса. В верхней части тропосферы направление ветров противоположное.

Сила Кориолиса таким же образом участвует в формировании общей циркуляции океана.

Спираль Экмана

В пограничных слоях атмосферы и океана, в том числе в переходном слое между атмосферой и океаном, наряду с силой Кориолиса и силой барического градиента, существенную роль играет также и сила внутренного трения. Действие трения в пограничном слое (слое Экмана) приводит к отклонению ветра от геострофического в область пониженного давления. В результате, в нижней части циклона воздух направляется к его центру. Происходит «всасывание» воздуха, поднимающегося в центре циклона вверх, что, из-за конденсации водяного пара приводит к выделению теплоты парообразования, образованию осадков и поддержанию энергии его вращения. В антициклонах движение ветра противоположное, что приводит к опусканию воздуха в его центре и рассеиванию облаков. По мере удаления от подстилающей поверхности роль силы трения падает, что приводит к повороту вектора скорости потока в сторону направления геострофического ветра. Поворот ветра с высотой в пограничном слое атмосферы на угол ~ 20-40° называется "спираль Экмана". Этот эффект наглядно проявляется в отклонении направления дрейфа льда от вектора скорости геострофического ветра, впервые обнаруженного Ф. Нансеном во время полярной экспедиции 1893—1896 гг. на судне «Фрам». Теорию явления представил В.Экман в 1905 году.

Круг инерции

В инерциальной системе отсчета инерционным является равномерное и прямолинейное движение. А на вращающейся планете на каждую материальную точку (а также, на поток), свободно двигающуюся по искривленной траектории, действуют две силы инерции — центробежная сила и сила Кориолиса. Эти силы могут уравновешивать друг друга. Пусть  — относительная линейная скорость точки, направленная в горизонтальной плоскости по часовой стрелке в Северном, и против часовой стрелки — в Южном полушарии (как в антициклоне). Тогда, равновесие сил инерции наступает, если

,

где  — радиус кривизны траектории частицы,  — параметр Кориолиса,  — географическая широта. В отсутствии других сил, равновесие силы Кориолиса и центробежной силы приведет к вращению частицы (потока) по дуге, называемой «круг инерции», имеющей радиус . Материальная точка совершает полный оборот по кругу инерции за период, равный  — половине маятниковых суток.

В средних широтах параметр Кориолиса имеет порядок 10−4 с−1. Геострофическая скорость в тропосфере составляет около 10 м/с, чему соответствует круг инерции с радиусом около 100 км. Средней скорости течения в океане 10 см/с соответствует круг инерции, имеющий радиус порядка 1 км. Циркуляция потока по кругу инерции образует антициклонический вихрь для возникновения которого не требуется каких-либо иных причин, кроме инерции[5].

Инерционные колебания и волны

Если для жидкости (или газа) сила Кориолиса является основной силой, возвращающей частицу в состояние равновесия, то её действие приводит к появлению планетарных инерционных волн (называемых также «инерционными колебаниями»). Период таких колебаний равен , а колебательный процесс развивается в направлении, поперечном к вектору скорости распространения волн. Математическое описание инерционных волн можно, в частности, получить в рамках теории мелкой воды[6]. В средних широтах период инерционных колебаний порядка 17 часов.

Изменение параметра Кориолиса с широтой создает условия для возникновения в атмосфере, или в океане, волн Россби. Эти волны приводят к меандрированию струйных течений, в результате чего и формируются основные синоптические процессы.

Работа «турбулентной силы Кориолиса»

В гидромеханике величина механической работы, производимой силой в единице объёма за единицу времени (то есть мощность), есть скалярное произведение вектора силы на вектор скорости потока. (Считается, что понятие работы было введено в механику Кориолисом). Поскольку в механике материальной точки сила Кориолиса всегда направлена под прямым углом к её скорости, работа этой силы тождественно равна нулю. Поэтому сила Кориолиса не может изменить кинетическую энергию в целом, однако она может отвечать за перераспределение этой энергии между её компонентами. В статистической гидромеханике существует два уравнения кинетической энергии — уравнение кинетической энергии упорядоченного движения и уравнение баланса энергии турбулентности[3]. При этом возникает понятие работы турбулентной силы Кориолиса, определяющей обмен кинетической энергией между упорядоченным и турбулентным движением, происходящим под действием этой силы[7]. За единицу времени в единице объёма турбулентная сила Кориолиса производит работу, равную

.

Положительному значению соответствует переход кинетической энергии упорядоченного движения в энергию турбулентности[3] .

Сила Кориолиса играет ключевую роль в геофизической гидродинамике, однако, вклад в энергетику гидродинамических процессов вносит только работа относительно малой, но важной, турбулентной силы Кориолиса. Анализ аэрологических данных[8] указывает на то, что этот эффект даёт основной вклад в энергию упорядоченного движения, приводящий к суперротации атмосферы.

Аналогичные физические механизмы, основанные на действии силы Кориолиса, формируют циркуляцию атмосферы на других планетах, (возможно) циркуляцию в жидком ядре планет, а также в звёздах, в аккреционных дисках, в газовых компонентах вращающихся галактик.[9],[10],[11][источник не указан 3476 дней]

Гиротурбулентная неустойчивость

Если жидкость (или газ) неоднородна (в частности, если она неравномерно нагрета), то в ней возникает флуктуационный поток вещества . Этот поток зависит как от градиента плотности, так и от энергии турбулентных флуктуаций. Во вращающейся жидкости этот поток порождает турбулентную силу Кориолиса, работа которой приводит к обратимому обмену кинетической энергии между упорядоченной и турбулентной компонентами. Но поскольку турбулентный поток вещества зависит от энергии турбулентности, то возникает обратная связь. При благоприятных условиях такая обратная связь приводит к возникновению так называемой гиротурбулентной неустойчивости[12]. В процессе гиротурбулентных колебаний происходит периодическая перекачка энергии между упорядоченной и неупорядоченной формами движения. Поскольку эти колебания возникают в результате действия турбулентной силы Кориолиса, то их следует рассматривать как особый вид инерционных колебаний.

Турбулентная сила Кориолиса — величина сравнительно малая. Но, несмотря на это, гиротурбулентная неустойчивость отвечает за сравнительно медленные, но очень мощные геофизические и астрофизические природные процессы типа цикла индекса.

См. также

Литература

  1. Ландау Л. Д., Лифшиц Е. М. Гидродинамика. — М.: Наука, 1988. — C. 736
  2. Хайкин С. Э. Физические основы механики. — М.: Наука, 1971. — С. 752
  3. 1 2 3 4 5 Монин А. С., Яглом А. М. Статистическая гидромеханика. Ч. 1. — М.: Наука, 1965. — 639 с.
  4. Матвеев Л. Т. Курс общей метеорологии. Физика атмосферы. — Л.: Гидрометеоиздат, 1984. — С. 751
  5. Халтинер Дж. Мартин Ф. Динамическая и физическая метеорология. М.: Иностранная литература.— 1960.— 436 с.
  6. Гилл А. Динамика атмосферы и океана. В 2-х частях. — М.: Мир, 1986.
  7. Krigel A. M. The theory of the index cycle in the general circulation of the atmosphere // Geophys. Astrophys. Fluid Dynamics.— 1980.— 16.— p. 1-18.
  8. Кригель А. М. Анализ механизмов трансформации энергии турбулентности в упорядоченную циркуляцию атмосферы // Вестник Ленинградского Государственного Университета. Сер. 7. — 1989. — Вып. 2 (№ 14). — С. 91—94.
  9. Кригель А. М. Теория стационарной дисковой аккреции на звезды и ядра галактик // Астрофизика . — 1989. — 31. — Вып.1. — с.137-143.
  10. Кригель А. М. Влияние турбулентности на радиальное движение в газовых дисках галактик // Кинематика и физика небесных тел. — 1990. — 6. — №1. — с.73-78.
  11. Кригель А. М. Численное моделирование гиротурбулентных колебаний светимости рентгеновских звёзд // Астрономический журн. — 1990. — 67. — Вып 6. — с.1174-1180.
  12. Кригель А. М. Неустойчивость струйного течения в турбулентной вращающейся неоднородной жидкости // Журнал технической физики. — 1985. — 55. — Вып. 2. — С. 442—444.
Эта страница в последний раз была отредактирована 8 февраля 2021 в 05:11.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).