Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Гиперполяризация (физика)

Из Википедии — свободной энциклопедии

Гиперполяризация — поляризация ядерных спинов веществ далеко за пределами теплового равновесия. Гиперполяризованные благородные газы обычно используются при магнитно-резонансной томографии лёгких. Уровень поляризации 129Xe и 3He может в 104—105 раз превышать уровень теплового равновесия.

Методы гиперполяризации:

  • спин-обменная оптическая накачка;
  • оптическая накачка с обменом метастабильностью;
  • динамическая поляризация ядер (ДПЯ);
  • индуцированная параводородом поляризация ядер (ИППЯ);
  • усиление сигнала в результате обратимого обмена.

Спин-обменная оптическая накачка[1]

Луч лазера с круговой поляризацией вызывает электронные переходы в атомах щелочных металлов (например, рубидий) находящихся в газообразном состоянии, тем самым создавая электронную поляризацию. При столкновении щелочных металлов с благородными газами (например, ксенон) в процессе спинового обмена поляризация с электронов переносится на ядра благородных газов.

Динамическая поляризация ядер

Динамическая поляризация ядер основана на переносе электронной поляризации на ядра.[2] Перенос поляризации может осуществляться спонтанно или при спиновом смешивании.

В методе динамической поляризации ядер в жидкой фазе (dissolution-DNP, d-DNP) процесс гиперполяризации происходит в твердом состоянии при низких температурах, после чего образец растворяется в разогретом растворителе и впрыскивается ЯМР ампулу, расположенную в спектрометре ЯМР.[3]

Аналогично ДПЯ в жидкой фазе, существует метод ДПЯ для работы в газовой фазе, где также процесс гиперполяризации происходит в твердом состоянии, после чего вещество в процессе сублимации нагревается и переходит в газообразной состояние, подходящее для детекции в спектрометре ЯМР.[4]

Индуцированная параводородом поляризация ядер

В данном методе используется спиновый изомер водорода — параводород, у которого ядерные спины противоположно направлены. При присоединении параводорода к интересующей молекуле, магнитная эквивалентность ядерных спинов параводорода нарушается, но сохраняется корреляция их спинов, что позволяет наблюдать усиление сигнала в спектрах ЯМР.

Эффекты ИППЯ впервые наблюдались в ходе реакции гидрирования параводородом в сильном поле. Такой эффект был назван PASADENA (Parahydrogen And Synthesis Allows Dramatically Enhanced Nuclear Alignment).[5] В этом случае заселяются уровни имеющие синглетную симметрию, а в спектрах ЯМР наблюдаются два антифазных сигнала.

Другой эффект — ALTADENA (Adiabatic Longitudinal Transport After Dissociation Engenders Nuclear Alignment) — обнаруживается при гидрировании субстрата в слабом магнитном поле.[6] В ALTADENA экспериментах заселяется только один из уровней, соответствующий синглетной симметрии.

Примечания

  1. Thad G. Walker, William Happer. Spin-exchange optical pumping of noble-gas nuclei (англ.) // Reviews of Modern Physics. — 1997-04-01. — Vol. 69, iss. 2. — P. 629–642. — ISSN 1539-0756 0034-6861, 1539-0756. — doi:10.1103/RevModPhys.69.629.
  2. A Abragam, M Goldman. Principles of dynamic nuclear polarisation // Reports on Progress in Physics. — 1978-03-01. — Т. 41, вып. 3. — С. 395–467. — ISSN 1361-6633 0034-4885, 1361-6633. — doi:10.1088/0034-4885/41/3/002.
  3. Guannan Zhang, Christian Hilty. Applications of dissolution dynamic nuclear polarization in chemistry and biochemistry (англ.) // Magnetic Resonance in Chemistry. — 2018-7. — Vol. 56, iss. 7. — P. 566–582. — doi:10.1002/mrc.4735.
  4. A. Comment, S. Jannin, J.-N. Hyacinthe, P. Miéville, R. Sarkar. Hyperpolarizing Gases via Dynamic Nuclear Polarization and Sublimation (англ.) // Physical Review Letters. — 2010-07-01. — Vol. 105, iss. 1. — ISSN 1079-7114 0031-9007, 1079-7114. — doi:10.1103/PhysRevLett.105.018104.
  5. C. Russell Bowers, D. P. Weitekamp. Parahydrogen and synthesis allow dramatically enhanced nuclear alignment (англ.) // Journal of the American Chemical Society. — 1987-9. — Vol. 109, iss. 18. — P. 5541–5542. — ISSN 0002-7863. — doi:10.1021/ja00252a049. Архивировано 2 июня 2020 года.
  6. Michael G. Pravica, Daniel P. Weitekamp. Net NMR alignment by adiabatic transport of parahydrogen addition products to high magnetic field (англ.) // Chemical Physics Letters. — 1988-4. — Vol. 145, iss. 4. — P. 255–258. — doi:10.1016/0009-2614(88)80002-2. Архивировано 6 марта 2019 года.
Эта страница в последний раз была отредактирована 13 июня 2023 в 10:32.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).