Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Ароматы в физике элементарных частиц
Ароматы
Чётность
Квантовые числа
Заряды
Комбинации
См. также

Гиперзаря́д (обозначается Y) частицы — сумма барионного числа B и ароматов: странности S, очарования C, прелести и истинности T[1]:

Изначально в определение гиперзаряда был включён только один аромат (странность), поскольку концепция гиперзаряда была введена в середине 1950-х годов[2][3][4], когда другие ароматы ещё не были открыты. Не следует путать гиперзаряд, связанный с сильным взаимодействием, со слабым гиперзарядом, который играет аналогичную роль в электрослабом взаимодействии.

Электрический заряд и гиперзаряд

Формула Гелл-Манна — Нисидзимы связывает гиперзаряд частицы с её электрическим зарядом и проекцией изоспина:

где Iz — третья компонента изоспина, а Q — электрический заряд. Этот закон позволяет, в свою очередь, выразить гиперзаряд через проекцию изоспина и электрический заряд:

Изоспин создает мультиплеты частиц с одинаковым гиперзарядом, равным удвоенному среднему заряду по мультиплету:

что легко выводится из (3), поскольку гиперзаряд одинаков для всех членов мультиплета, а среднее значение Iz по мультиплету равно нулю. Например, на рисунке квадруплет Δ-барионов с гиперзарядом +1 имеет средний заряд (−1 + 0 + 1 + 2)/4 = +1/2.

Декуплет барионов.

Примеры:

  • нуклонная группа (протон+нейтрон) имеет средний заряд (1+0)/2 = +1/2, так что оба они имеют гиперзаряд Y = 1 (барионное число B = +1, значения ароматов равны 0). Из формулы Гелл-Манна — Нисидзимы получаем, что протон имеет проекцию изоспина, равную +1 − 1/2 = +1/2, а нейтрон имеет проекцию изоспина, равную 0 − 1/2 = −1/2.
  • Это верно и для кварков: для u-кварка, у которого Q = +2/3 и Iz = +1/2, мы получаем гиперзаряд 1/3, который соответствует барионному числу (поскольку для создания бариона нужно 3 кварка, то кварки имеют барионное число ±1/3).
  • Для s-кварка (странного кварка) с зарядом −1/3, барионным числом 1/3 и странностью −1 гиперзаряд равен Y = B + S = −2/3, откуда проекция изоспина Iz = QY/2 = 0.

Гиперзаряды d- и u-кварков равны +1/3, а гиперзаряды остальных кварков равны их удвоенному электрическому заряду, поскольку для них изоспин равен нулю: s- и b-кварки («нижние») имеют гиперзаряд −2/3, а c- и t-кварки («верхние») — +4/3.

Практическое устаревание идеи

Гиперзаряд — концепция, разработанная в середине XX века, чтобы организовать группы частиц в «зоопарке элементарных частиц» и описать законы сохранения, основанные на трансформациях частиц.

Обозначим через d, u, s, b, c и t количества соответствующих кварков в системе (причем в эти числа кварк и антикварк дают вклады +1 и −1, соответственно). Учитывая, что ароматы кварков имеют знаки, совпадающие со знаком их электрических зарядов (S = −s, C = +c, B' = −b, T = +t), и что барионное число системы B = 13(d + u + s + b + c + t), можно выразить гиперзаряд системы через её кварковый состав:

В современных описаниях адронного взаимодействия удобнее и нагляднее чертить диаграммы Фейнмана, которые прослеживают через сочетание отдельных кварков взаимодействия барионов и мезонов, чем считать гиперзаряды частиц. Слабый гиперзаряд, однако, всё ещё используется в различных теориях электрослабого взаимодействия.

См. также

Примечания

  1. Истинность включена лишь формально, её можно не учитывать из-за очень короткого времени жизни t-кварка, который распадается на менее массивные кварки до того, как проходит достаточное время, чтобы он мог взаимодействовать с окружающими кварками через сильное взаимодействие
  2. T. Nakano, K. Nishijima. Charge Independence for V-particles (англ.) // Progress of Theoretical Physics  (англ.) : journal. — 1953. — Vol. 10, no. 5. — P. 581. — doi:10.1143/PTP.10.581. — Bibcode1953PThPh..10..581N.
  3. K. Nishijima. Charge Independence Theory of V Particles (англ.) // Progress of Theoretical Physics  (англ.) : journal. — 1955. — Vol. 13, no. 3. — P. 285. — doi:10.1143/PTP.13.285. — Bibcode1955PThPh..13..285N.
  4. M. Gell-Mann. The Interpretation of the New Particles as Displaced Charged Multiplets (англ.) // Il Nuovo Cimento  (англ.) : journal. — 1956. — Vol. 4, no. S2. — P. 848. — doi:10.1007/BF02748000.
Эта страница в последний раз была отредактирована 12 июля 2019 в 18:40.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).