Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Гиперболоидная модель

Из Википедии — свободной энциклопедии

Красная дуга окружности является геодезической в дисковой модели Пуанкаре. Она проектируется на коричневую геодезическую на зелёном гиперболоиде.

Гиперболоидная модель, известная также как модель Минковского или лоренцева модель (Герман Минковский, Хендрик Лоренц), является моделью n-мерной геометрии Лобачевского, в которой каждая точка представлена точкой на верхней поверхности двуполостного гиперболоида в (n+1)-мерном пространстве Минковского а m-плоскости представлены пересечением (m+1)-плоскостей в пространстве Минковского с S+. Функция гиперболического расстояния в этой модели удовлетворяет простому выражению. Гиперболоидная модель n-мерного гиперболического пространства тесно связана с моделью Бельтрами — Клейна и дисковой моделью Пуанкаре, так как они являются проективными моделями в смысле, что группа движений[en] является подгруппой проективной группы.

Квадратичная форма Минковского

Если являются векторами в (n + 1)-мерном координатном пространстве , квадратичная форма Минковского определяется как

Вектора , такие, что , образуют n-мерный гиперболоид S, состоящий из двух связных компонент, или листов — верхний, или будущее, лист , где и нижний, или прошлое, лист , где . Точки n-мерной гиперболоидной модели являются точками на листе будущего .

Билинейная форма Минковского B является поляризацией квадратичной формы Минковского Q,

Или в явном виде,

Гиперболическое расстояние между двумя точками u и v пространства задаётся формулой ,

где arch является обратной функцией гиперболического косинуса.

Прямые

Прямая в гиперболическом n-пространстве моделируется геодезической на гиперболоиде. Геодезическая на гиперболоиде является (непустым) пересечением с двумерным линейным подпространством (включая начало координат) n+1-мерного пространства Минковского. Если мы возьмём в качестве u и v базисные вектора линейного подпространства с

и используем w как параметр для точек на геодезической, то

будет точкой на геодезической[1].

Более обще, k-мерная «плоскость» в гиперболическом n-пространстве будет моделироваться (непустым) пересечением гиперболоида с k+1-мерным линейным подпространством (включая начало координат) пространства Минковского.

Движения

Неопределённая ортогональная группа O(1,n), называемая также (n+1)-мерной группой Лоренца, является группой Ли вещественных (n+1)×(n+1) матриц, которая сохраняет билинейную форму Минковского. Другими словами, это группа линейных движений пространства Минковского. В частности, эта группа сохраняет гиперболоид S. Напомним, что неопределённые ортогональные группы имеют четыре связные компоненты, соответствующие обращению или сохранению ориентации на каждом подпространстве (здесь — 1-мерном и n-мерном), и образуют четверную группу Клейна. Подгруппа O(1,n), которая сохраняет знак первой координаты, является ортохронной группой Лоренца, обозначаемой O+(1,n), и имеет две компоненты, соответствующие сохранению или обращению ориентации подпространства. Её подгруппа SO+(1,n), состоящая из матриц с определителем единица, является связной группой Ли размерности n(n+1)/2, которая действует на S+ линейными автоморфизмами и сохраняет гиперболическое расстояние. Это действие транзитивно и является стабилизатором вектора (1,0,…,0), состоящим из матриц вида

где принадлежит компактной специальной ортогональной группе SO(n) (обобщающей группу вращений SO(3) для n = 3). Отсюда следует, что n-мерное гиперболическое пространство может быть представлено как однородное пространство и риманово симметрическое пространство ранга 1,

Группа SO+(1,n) является полной группой сохраняющих ориентацию движений n-мерного гиперболического пространства.

История

  • В нескольких статьях между 1878 и 1885 Вильгельм Киллинг[2][3][4] использовал представление геометрии Лобачевского, которое он приписывает Карлу Вейерштрассу. В частности, он обсуждает квадратичные формы, такие как или для произвольных размерностей , где является двойственной мерой кривизны, означает евклидову геометрию, эллиптическую геометрию, а означает гиперболическую геометрию. Для подробностей см. История преобразований Лоренца, раздел «Киллинг»[en].
  • Согласно Джереми Грею (1986)[5] Пуанкаре использовал гиперболоидную модель в его персональных заметках в 1880. Пуанкаре опубликовал свои результаты в 1881, в которых он обсуждает инвариантность квадратичной формы [6]. Грей показывает, где гиперболоидная модель явно упоминается в более поздних работах Пуанкаре[7]. Для подробностей см. История преобразований Лоренца, раздел «Пуанкаре»[en].
  • Также Хомершем Кокс в 1882[8][9] использовал координаты Вейерштрасса (без использования этого имени), удовлетворяющие соотношению , а также соотношению . Для подробностей см. История преобразований Лоренца, раздел «Кокс»[en].
  • Далее модель использовали Альфред Клебш и Фердинанд фон Линдеман в 1891 при обсуждении соотношений и [10]. Для подробностей см. История преобразований Лоренца, раздел «Линдерман»[en].
  • Координаты Вейерштрасса использовали также Герард (1892), Хаусдорф (1899), Вудс (1903) и Либман (1905)[en].

Позднее (1885) Киллинг утверждал, что фраза координаты Вейерштрасса соотносится с элементами гиперболоидной модели следующим образом: если задано скалярное произведение на , координаты Вейерштрасса точки равны

что можно сравнить с выражением

для модели полусферы[11].

Как метрическое пространство гиперболоид рассматривал Александр Макфарлейн[en] в книге Papers in Space Analysis (1894). Он заметил, что точки на гиперболоиде можно записать как

где α является базисным вектором, ортогональным оси гиперболоида. Например, он получил гиперболический закон косинусов[en] путём использования алгебры физики[en][1].

Х. Дженсен сфокусирвался на гиперболоидной модели в статье 1909 года «Представление гиперболической геометрии на двухполостном гиперболоиде»[12]. В 1993 У. Ф. Рейнольдс изложил раннюю историю модели в статье, напечатанной в журнале American Mathematical Monthly[13].

Будучи общепризнанной моделью в двадцатом веке, её отождествил с Geschwindigkeitsvectoren (нем., векторами скорости) Герман Минковский в пространстве Минковского. Скотт Вальтер в статье 1999 «Неевклидов стиль специальной теории относительности»[14] упоминает осведомлённость Минковского, но ведёт происхождение модели к Гельмгольцу, а не к Вейерштрассу или Киллингу.

В ранние годы релятивистскую гиперболоидную модель использовал Владимир Варичак[en] для объяснения физики скорости. В его докладе в Немецком Математическом обществе в 1912 он ссылался на координаты Вейерштрасса[15].

См. также

Примечания

  1. 1 2 Macfarlane, 1894.
  2. Killing, 1878, с. 72-83.
  3. Killing, 1880, с. 265-287.
  4. Killing, 1885.
  5. Gray, 1986, с. 271-2.
  6. Poincaré, 1881, с. 132 -138.
  7. Poincaré, 1887, с. 71-91.
  8. Cox, 1881, с. 178-192.
  9. Cox, 1882, с. 193-215.
  10. Lindemann, 1891, с. 524.
  11. Deza E., Deza M., 2006.
  12. Jansen, 1909, с. 409-440.
  13. Reynolds, 1993, с. 442-55.
  14. Scott, 1999, с. 91–127.
  15. Varićak, 1912, с. 103–127.

Литература

  • Killing W. Ueber zwei Raumformen mit constanter positiver Krümmung (нем.) // Journal für die reine und angewandte Mathematik. — 1878. — Bd. 86. — S. 72-83.
  • Killing W. Die Rechnung in den Nicht-Euklidischen Raumformen (нем.) // Journal für die reine und angewandte Mathematik. — 1880. — Bd. 89. — S. 265-287.
  • Killing W. Die nicht-euklidischen Raumformen (нем.). — 1885.
Эта страница в последний раз была отредактирована 23 октября 2023 в 22:44.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).