Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Генами старения можно назвать гены, выключение которых способно замедлить старение. Старение организма является комплексным явлением, в ходе которого происходит ослабление его жизненных функций. Этот процесс неразрывно связан с генетикой организма, и были обнаружены гены, выключение которых приводит к увеличению продолжительности жизни.

Функция генов старения, несмотря на их название, состоит, как правило, не в том, чтобы старить организм: эти гены обычно являются участниками различных метаболических каскадов. Открыты гены старения были в конце XX века на круглых червях[1]. Изучение этих генов связано с исследованиями на модельных организмах, например с экспериментами на дожитие.

Гены старения различных организмов

Нематода

Нематода Caenorhabditis elegans, жизнь которой длится около трёх недель, широко используется в экспериментах по изучению старения[2]. Для C. elegans обнаружена обратная зависимость скорости потери подвижности и продолжительности жизни, то есть для нематод-долгожителей характерен более длительный период активности[3]. Роль в старении нематоды C. elegans играют, в частности, гены daf. Эти гены контролируют переход в dauer-форму – состояние червя, в котором не происходит развития или размножения. Эта форма представляет собой особую личиночную стадию развития и помогает животному увеличить шансы на выживание в неблагоприятных условиях внешней среды[4]. Типичными сигналами перехода в dauer-форму являются нехватка пищи, большая плотность особей, высокая температура. Нокаут некоторых генов сигнального пути перехода в dauer-форму приводит к увеличению продолжительности жизни особей C. elegans. Один из таких генов — daf-23 (age-1). В литературе можно встретить упоминание daf-23 и age-1 как двух разных генов[5], однако было показано, что daf-23 и age-1 — один и тот же ген[6].

Нокаут daf-23 способствует увеличению продолжительности жизни нематод более чем в 2 раза[1][7]. Мутантные по гену daf-2 нематоды также живут в два раза дольше своих собратьев дикого типа[1][8].

Помимо увеличения продолжительности жизни, нокаут гена daf-23 приводит к повышенной устойчивости нематод к высоким температурам[9]. Это наблюдение само по себе подчёркивает проявление повышенной устойчивости к стрессу у нематод-долгожителей.

Продукты daf-генов и долголетие[10].

Ген daf-2 кодирует рецептор, похожий на инсулиновый рецептор человека[11]. Этот рецептор, активируемый инсулиноподобным фактором роста 1 (IGF-1), необходим для функционирования сигнального пути, который широко распространён в природе и встречается у различных животных, в том числе у плодовых мух и мышей. Сигнальный путь IGF-1 аналогичен сигнальному пути инсулина у млекопитающих. Контроль работы множества генов позволяет гену daf-2 регулировать разнообразные физиологические процессы на разных стадиях жизненного цикла нематоды. Мутанты daf-2- характеризуются повышенной экспрессией генов, связанных, в частности, с устойчивостью к стрессу, в то время как экспрессия генов чувствительности к стрессу снижена[12].

Особенности транскриптома daf2-[12]
Функциональный класс Транскрипт
Повышенный уровень экспрессии
Устойчивость к стрессу hsp-16s, hsp-12s, СОД, глутатион-S-трансфераза
Синтез белка Гены рибосомных субъединиц (rpl-, rps- гены)
Сигнальные пути Гены транстиретина, фосфорилирования белков, рецепторов, сопряженных с G-белком
Экспрессия генов Ген tts-1
Коллагены Гены col
Метаболизм Гены fat
Протеолиз Гены протеаз
Пониженный уровень экспрессии
Фертильность Вителлогенин
Клеточный ответ Гены cey-1, cey-2, cey-3
Рост клеток Гены тубулина, актина, ДНК- и РНК- метаболизма, трансляции
Протеолиз Гены asp, rpn, cct
Взрослые нематоды — дикого типа (гермафродит; сверху) и с нокаутом гена age-1 (стерильная; снизу).[12]

Одним из генов, регулируемых daf-2, является daf-16, кодирующий транскрипционный фактор DAF-16. В норме рецептор DAF-2 подавляет работу DAF-16 посредством фосфорилирования. В мутантах daf-2- DAF-16 не фосфорилирован, а значит активен. Экспериментально показано, что активация DAF-16 важна для увеличения продолжительности жизни нематод[10].

Гены daf контролируют метаболические перестройки нематоды в ответ на внешние стрессовые воздействия. При нокауте этих генов возрастает продолжительность жизни нематод, а ограничение питания нематод daf-23- в экспериментах дополнительно увеличивало продолжительность их жизни[13]. При этом есть основания полагать, что продление жизни C. elegans через ограничение питания действует независимо от инсулин/IGF-1 сигнального пути[14].

Инсулин/IGF сигнальный каскад в C. elegans контролирует переход в dauer форму. Фосфорилирование транскрипционного фактора DAF-16 (гомолога FoxO) предотвращает переход в dauer форму. Это фосфорилирование регулируется протеин-киназами (PDK-1) и фосфатазами (DAF-18 и PPTR-1). Важное место в каскаде занимает протеин-киназа AKT[15].

Другие изменения наблюдаются в мутантах по гену clk-1. Этот ген влияет на эмбриональное и постэмбриональное развитие, скорость роста и другое[5]. Было установлено, что продукт гена clk-1 участвует в метаболизме убихинона, а мутантные по этому гену нематоды накапливают деметоксиубихинон[16]. Мутанты clk-1- характеризуются замедленным развитием, повышенной устойчивостью к стрессу и большей продолжительностью жизни. В мутантах clk-1- наблюдается повышенное содержание убихинона в плазматической мембране. Согласно одной из гипотез, стрессоустойчивость может быть следствием действия убихинона в плазматической мембране как антиоксиданта, а увеличение продолжительности жизни — прямым следствием повышенной стрессоустойчивости. Интересно, что гиперэкспрессия CLK-1 в нематодах дикого типа уменьшает продолжительность жизни C. elegans[17]. Есть сведения об увеличении продолжительности жизни мутантов по генам clk-2, clk-3, gro-1, а нематоды daf-2- clk-1- живут в пять раз дольше, нежели черви дикого типа[18].

Плодовая муха

Как и у C. elegans, мутации по генам инсулин/IGF-1 сигнального каскада Drosophila melanogaster могут увеличивать продолжительность жизни мух: мутанты по гену инсулин-подобного рецептора InR, гомологичного гену daf-2 C. elegans, живут дольше (самки мух) или характеризуются пониженной смертностью в преклонном возрасте (самцы мух)[19]. Мутации по гену chico, который кодирует субстрат рецептора InR, участвующий в инсулин/IGF-1 каскаде, также продлевают жизнь плодовых мух[20]. Участие в контроле долголетия мух показано для гена dFOXO — гомолога daf-16 °C. elegans[21].

В результате повреждения гена Indy (сокращение для I`m not dead yet) продолжительность жизни мух почти удвоилась без заметного снижения фертильности или физической активности[22], а мутантные по гену mth (сокращение для methuselah — Мафусаил) мухи демонстрируют прирост продолжительности жизни в 35 %[23].

Мышь

Мутация в гене, кодирующем адаптерный белок p66shc, повышает устойчивость мышей к стрессу и продлевает их жизнь на ~30 %[24]. Белок p66shc участвует в ответе на окислительный стресс. Клетки мышей, у которых отсутствует p66shc, демонстрируют повышенную устойчивость к апоптозу, который типично следует за окислительным стрессом в клетках мышей дикого типа. При этом в клетках дикого типа стресс приводит к фосфорилированию p66shc, что, видимо, необходимо для стресс-индуцированного апоптоза. Не совсем ясно, почему мутантные по p66shc мыши живут дольше. Одна из гипотез состоит в том, что снижение у мышей клеточности в результате стресс-индуцированного апоптоза способствует старению, а у мутантов этого не происходит вследствие отсутствия p66shc. Другая возможность состоит в том, что отсутствие p66shc в первую очередь снижает степень повреждения, вызываемого окислительным стрессом, что положительно влияет на здоровье мышей и также снижает вероятность апоптоза. Важно также отметить, корреляция устойчивости к окислительному стрессу и долголетия мышей не является основанием для формулирования причинно-следственных связей[25].

Показано, что рецептор IGF-1 участвует в регуляции продолжительности жизни: гетерозиготные мыши Igf1r+/- живут в среднем на 26 % дольше мышей дикого типа, при этом не наблюдается изменений в их питании, физической активности, фертильности, энергетическом метаболизме[26]. Для мутантов Igf1r+/- развитие карликовости не свойственно. Эти мутанты демонстрируют также повышенную устойчивость к окислительному стрессу. Гомозиготные мыши lgf1r-/- не выживают.

Карликовые мыши Ames не имеют гормона роста, пролактина и тироид-стимулирующего гормона. Эти мыши гомозиготны по мутации Prop-1df транскрипционного фактора Prop-1, весят в три раза меньше нормальных мышей и живут примерно на 1 год дольше[27]. Prop-1 экспрессируется специфически в гипофизе и необходим для экспрессии Pit-1, который в свою очередь необходим для развития гипофиза[25]. Известно, что для мышей Ames, как и для мышей с ограниченной калорийностью питания, характерна низкая температура тела[28], а гиперэкспрессия гормона роста в мышах способствует проявлению признаков ускоренного старения[27]. Почему карликовые мыши Ames живут дольше ещё не выяснено.

Примечания

  1. 1 2 3 Larsen, Pamela L. Genes that regulate both development and longevity in Caenorhabditis elegans (англ.) // Genetics : journal. — 1995. — Vol. 139. — P. 1567—1583.
  2. Antebi, Adam. Genetics of aging in Caenorhabditis elegans (англ.) // PLoS genetics  (англ.) : journal. — 2007. — P. 54—59. — doi:10.1371/journal.pgen.0030129.
  3. Johnson, Thomas E. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1987. — Vol. 84. — P. 3777—3781. — doi:10.1371/journal.pgen.0030129.
  4. Nicole Fielenbach. C. elegans dauer formation and the molecular basis of plasticity (англ.) // Genes & development : journal. — 2008. — Vol. 22. — P. 2149—2165.
  5. 1 2 Jazwinski, S. Michal. Longevity, genes, and aging (англ.) // Science. — 1996. — Vol. 273. — P. 54—59. — PMID 3473482.
  6. Malone E. A. Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation (англ.) // Genetics : journal. — 1996. — Vol. 143. — P. 1193—1205.
  7. Succinate, Octopine. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans (англ.) // Nature : journal. — 1996. — Vol. 382.
  8. Kenyon, Cynthia. A C. elegans mutant that lives twice as long as wild type (англ.) // Nature : journal. — 1993. — Vol. 366. — P. 461—464.
  9. Lithgow, Gordon J. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 1995. — Vol. 92. — P. 7540—7544.
  10. 1 2 Gems, David. Ageing: microarraying mortality (англ.) // Nature. — 2003. — Vol. 424. — P. 259—261.
  11. Genetic Control of Aging and Life Span. Дата обращения: 13 декабря 2014. Архивировано 22 марта 2015 года.
  12. 1 2 3 Gami, Minaxi S. Studies of Caenorhabditis elegans DAF‐2/insulin signaling reveal targets for pharmacological manipulation of lifespan (англ.) // Aging cell : journal. — 2006. — Vol. 5. — P. 31—37.
  13. Johnson, Thomas E. Genetic variants and mutations of Caenorhabditis elegans provide tools for dissecting the aging processes (англ.) // Genetic effects on aging : journal. — 1990. — Vol. 2. — P. 101—126.
  14. Houthoofd, Koen. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans (англ.) // Experimental gerontology : journal. — 2003. — Vol. 38. — P. 947—954.
  15. Lant, Benjamin. An overview of stress response and hypometabolic strategies in Caenorhabditis elegans: conserved and contrasting signals with the mammalian system (англ.) // International journal of biological sciences : journal. — 2010. — Vol. 6.
  16. Jonassen, Tanya. A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans clk-1 mutants (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2001. — Vol. 98. — P. 421—426.
  17. Felkai, S. CLK‐1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans (англ.) // The EMBO journal  (англ.) : journal. — 1999. — Vol. 18. — P. 1783—1792.
  18. Lakowski, Bernard. Determination of life-span in Caenorhabditis elegans by four clock genes (англ.) // Science : journal. — 1996. — Vol. 272. — P. 1010—1013.
  19. Clancy, David J. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein (англ.) // Science : journal. — 2001. — Vol. 292. — P. 104—106.
  20. Tatar, Marc. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function (англ.) // Science : journal. — 2001. — Vol. 292. — P. 107—110.
  21. Hwangbo, Dae Sung. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body (англ.) // Nature : journal. — 2004. — Vol. 429. — P. 562—566.
  22. Rogina, Blanka. Extended life-span conferred by cotransporter gene mutations in Drosophila (англ.) // Science : journal. — 2000. — Vol. 290. — P. 2137—2140.
  23. Lin, Yi-Jyun. Extended life-span and stress resistance in the Drosophila mutant methuselah (англ.) // Science : journal. — 1998. — Vol. 282. — P. 943—946.
  24. Migliaccio, Enrica. The p66shc adaptor protein controls oxidative stress response and life span in mammals (англ.) // Nature : journal. — 1999. — Vol. 402. — P. 309—313.
  25. 1 2 Guarente, Leonard. Genetic pathways that regulate ageing in model organisms (англ.) // Nature : journal. — 2000. — Vol. 408. — P. 255—262.
  26. Holzenberger, Martin. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice (англ.) // Nature : journal. — 2002. — Vol. 421. — P. 182—187.
  27. 1 2 Bartke, Andrzej. Does growth hormone prevent or accelerate aging? (неопр.) // Experimental gerontology. — 1998. — Т. 33. — С. 675—687.
  28. Hunter, W. S. Low body temperature in long-lived Ames dwarf mice at rest and during stress (англ.) // Physiology & Behavior  (англ.) : journal. — Elsevier, 1999. — Vol. 67. — P. 433—437.
Эта страница в последний раз была отредактирована 19 июня 2022 в 09:53.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).