Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Гексаметилбензол
Изображение химической структуры
Изображение молекулярной модели
Общие
Систематическое
наименование
Гексаметилбензол
Хим. формула C12H18
Физические свойства
Состояние твёрдое
Молярная масса 162,2742‬ г/моль
Плотность 1,042 г/см³
Термические свойства
Температура
 • плавления 165,5 °C
 • кипения 263,4 °C
Классификация
Рег. номер CAS 87-85-4
PubChem
Рег. номер EINECS 201-777-0
SMILES
InChI
RTECS DA3200000
ChEBI 39001
ChemSpider
Безопасность
Пиктограммы СГС Пиктограмма «Восклицательный знак» системы СГС
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Гексаметилбензол, также известный как меллитен, представляет собой углеводород с молекулярной формулой C12H18 и конденсированной структурной формулой C6(CH3)6. Это  ароматическое соединение и производное бензола, где шесть атомов водорода бензола заменены метильной группой. В 1929 году Кэтлин Лонсдейл сообщила о  кристаллической структуре гексаметилбензола, продемонстрировав, что центральное кольцо является гексагональным и плоским, и тем самым закончила продолжающиеся дебаты о физических параметрах бензольной системы. Это был исторически значимый результат, как для области  рентгеновской кристаллографии, так и для понимания  ароматичности.[1][2]

Соединение может быть получено путём взаимодействия фенола с метанолом при повышенных температурах над подходящим твёрдым катализатором, таким как оксид алюминия.[3][4][5] Механизм процесса был тщательно изучен, и было выявлено несколько промежуточных продуктов. Алкиновая тримеризация диметилацетилена также даёт гексаметилбензол в присутствии подходящего катализатора. Гексаметилбензол может быть окислен до  меллитовой кислотой,[6] которая встречается в природе в виде соли алюминия в редком минеральном меллите. Гексаметилбензол может быть использован в качестве лиганда в  металлоорганических соединениях. Пример из химии органоорганических соединений показывает структурные изменения в лиганде, связанные с изменениями в степени окисления металлического центра, хотя такое же изменение не наблюдается в аналогичной железоорганической системе.[7]

В 2016 году кристаллическая структура препарата гексаметилбензола была опубликована в  Angewandte Chemie International Edition, где показана пирамидальная структура, в которой один атом углерода взаимодействует с шестью другими атомами углерода. Эта структура была «беспрецедентной», так как обычная максимальная валентность углерода равна четырём, и она привлекла внимание New Scientist, Chemical & Engineering News и Science News. Структура не нарушает правило октета, поскольку образующиеся углерод-углеродные связи не являются двухэлектронными связями и педагогически ценны для иллюстрации того, что атом углерода «может [непосредственно связываться] с более чем четырьмя атомами». Стивен Бахрах продемонстрировал, что соединение гиперкоординировано, но не гипервалентно, а также объяснил его ароматичность. Идея описания связи у таких видов через призму металлоорганической химии была предложена в 1975 году, вскоре после C6(CH3)2+6 впервые наблюдалось.[8][9][10]

Номенклатура и свойства

Согласно Синей книге, это химическое вещество может быть  систематически названо как 1,2,3,4,5,6-гексаметилбензол. [Цитата необходима] Локанты (числа перед названием) являются лишними, однако, как название Гексаметилбензол однозначно идентифицирует одно вещество и, таким образом, является официальным названием IUPAC для соединения. Это  ароматическое соединение с шестью π-электронами (удовлетворяющими правилу Хюккеля), делокализованными над циклической планарной системой; каждый из шести атомов углерода кольца  гибридизуется с sp2 и имеет тригональную плоскостную геометрию, тогда как каждый метилуглерод является тетраэдрическим с sp3 гибридизацией, что согласуется с эмпирическим описанием его структуры. При перекристаллизации из этанола твёрдый гексаметилбензол образуется в виде бесцветных или белых кристаллических орторомбических призм или игл с температурой плавления 165–166 ° C, температурой кипения 268 ° C и плотностью 1,0630 г см-3. Сообщалось, что орторомбические оранжево-жёлтые кристаллы смеси пикрилхлорида и гексаметилбензола в соотношении 1: 1 содержат чередующиеся стопки каждого компонента, вероятно,[11] из-за π-укладки ароматических систем. Он нерастворим в воде, но растворим в органических растворителях, включая бензол и этанол.[12]

Гексаметилбензол иногда называют меллитеном, название происходит от меллита, редкого минерала медового цвета; μέλι meli (GEN μέλιτος melitos) - греческое слово «мёд». Меллит состоит из гидратированной алюминиевой соли бензолгексакарбоновой кислоты (меллитовой кислоты), с формулой Al26(СО2)6] • 16H2O. Сама меллитовая кислота может быть получена из минерала, а последующее восстановление даёт меллитен. И наоборот, меллитен может быть окислен с образованием меллитовой кислоты:[6]

Обработка гексаметилбензола суперэлектрофильной смесью метилхлорида и трихлорида алюминия даёт гептаметилбензольный катион, один из первых карбокатионов, который будет наблюдаться непосредственно.

Структура

В 1927 году Кэтлин Лонсдейл определила твёрдую структуру гексаметилбензола из кристаллов, предоставленных  Кристофером Кельком Ингольдом. Её рентгеноструктурный анализ был опубликован в журнале Nature и впоследствии был описан как «замечательный ... для этой ранней даты». Лонсдейл описала работу в своей книге «Кристаллы и рентгеновские лучи», объяснив, что она признала, что, хотя элементарная ячейка была триклинной, дифракционная картина имела псевдогексагональную симметрию, что позволяло структурным возможностям быть достаточно ограниченным для метода проб и ошибок. подход к производству модели. Эта работа окончательно показала, что гексаметилбензол плоский и что расстояния между атомами углерода в кольце одинаковы,[2] что является важным доказательством в понимании природы ароматичности.

Получение

В 1880 году  Джозеф Ахилле Ле Бел и Уильям Х. Грин сообщили[13] о том, что было описано как «экстраординарный» катализируемый  хлоридом цинка синтез в одном сосуде гексаметилбензола из метанола. При температуре плавления катализатора (283 ° С) реакция имеет свободную энергию Гиббса (ΔG) -1090 кДж / моль и может быть идеализирована как:

Ле Бел и Грин рационализировали процесс как включающий ароматизацию путём конденсации метиленовых звеньев, образованных дегидратацией молекул метанола, с последующим полным метилированием  Фриделя-Крафтса полученного бензольного кольца с образованием хлорметана in situ. Основными продуктами были смеси насыщенных углеводородов с гексаметилбензолом в качестве второстепенного продукта. Гексаметилбензол также образуется в качестве второстепенного продукта в реакции алкилирования дурена  Фриделя-Крафтса из п-ксилола и может быть получен путём алкилирования с хорошим выходом из дурена или пентаметилбензола.

Гексаметилбензол обычно получают в газовой фазе при повышенных температурах над твёрдыми катализаторами. Ранний подход к получению гексаметилбензола заключался в реакции смеси паров ацетона и метанола на оксид алюминия с катализатором при 400 ° С. Объединение фенолов с метанолом над оксидом алюминия в сухой атмосфере углекислого газа при температуре 410–440 ° C также приводит к образованию гексаметилбензола, хотя и является частью сложной смеси анизола (метоксибензола), крезолов (метилфенолов) и других метилированных фенолов. Препарат органического синтеза с использованием метанола и фенола с  оксидом алюминия при 530 ° С даёт выход приблизительно 66%, хотя также сообщается о синтезе в других условиях.

Механизмы таких поверхностно-опосредованных реакций были исследованы с целью достижения большего контроля над результатом реакции, особенно в поисках селективного и контролируемого орто-метилирования. Как анизол, так и пентаметилбензол были описаны в качестве промежуточных продуктов в этом процессе.  Валентин Коптюг и его коллеги обнаружили, что оба изомера гексаметилциклогексадиенона (2,3,4,4,5,6- и 2,3,4,5,6,6-) являются промежуточными соединениями в процессе, подвергаясь миграции метила с образованием 1,2,3,4,5,6-гексаметилбензольный углеродный скелет.

Тримеризация трёх молекул 2-бутина (диметилацетилена) даёт гексаметилбензол. Реакция катализируется три-тригидрофуранатом трифенилхрома или  комплексом  триизобутилалюминия и  тетрахлорида титана.[14]

Источники

Примечания

  1. Newsletter January, 1993 // Anesthesia History Association Newsletter. — 1993-01. — Т. 11, вып. 1. — С. 1–16. — ISSN 1089-9634. — doi:10.1016/s1089-9634(93)50090-7.
  2. 1 2 John Lydon. The postage stamps of analogia // Biochemistry and Molecular Biology Education. — 2006-01. — Т. 34, вып. 1. — С. 17–20. — ISSN 1539-3429 1470-8175, 1539-3429. — doi:10.1002/bmb.2006.49403401017.
  3. E. Briner, W. Plüss, H. Paillard. Recherches sur la déshydration catalytique des systèmes phénols-alcools (англ.) // Helvetica Chimica Acta. — 1924. — Vol. 7, iss. 1. — P. 1046–1056. — doi:10.1002/hlca.192400701132.
  4. HEXAMETHYLBENZENE // Organic Syntheses. — 1955. — Т. 35. — С. 73. — doi:10.15227/orgsyn.035.0073. Архивировано 29 августа 2021 года.
  5. Phillip S. Landis, Werner O. Haag. Formation of Hexamethylbenzene from Phenol and Methanol (англ.) // The Journal of Organic Chemistry. — 1963-02. — Vol. 28, iss. 2. — P. 585–585. — ISSN 1520-6904 0022-3263, 1520-6904. — doi:10.1021/jo01037a517. Архивировано 29 августа 2021 года.
  6. 1 2 J. P. Wibaut, J. Overhoff, E. W. Jonker, K. Gratama. On the preparation of mellitic acid from hexa-methylbenzene and on the hexachloride of mellitic acid (англ.) // Recueil des Travaux Chimiques des Pays-Bas. — 1941. — Vol. 60, iss. 10. — P. 742–746. — doi:10.1002/recl.19410601005.
  7. Topics in organic electrochemistry. — New York: Plenum Press, 1986. — 1 online resource (xiv, 296 pages) с. — ISBN 978-1-4899-2034-8, 1-4899-2034-X.
  8. H. Hogeveen, P.W. Kwant. Direct observation of a remarkably stable dication of unusual structure: (CCH3)62⊕. (англ.) // Tetrahedron Letters. — 1973. — Vol. 14, iss. 19. — P. 1665–1670. — doi:10.1016/S0040-4039(01)96023-X. Архивировано 23 февраля 2020 года.
  9. H. Hogeveen, P.W. Kwant, J. Postma, P.Th. van Duynen. Electronic spectra of pyramidal dications, (CCH362+ and (CH)62+. (англ.) // Tetrahedron Letters. — 1974. — Vol. 15, iss. 49-50. — P. 4351–4354. — doi:10.1016/S0040-4039(01)92161-6. Архивировано 17 июня 2018 года.
  10. H. Hogeveen, P. W. Kwant. Chemistry and spectroscopy in strongly acidic solutions. XL. (CCH3)62+, an unusual dication // Journal of the American Chemical Society. — 1974-04-01. — Т. 96, вып. 7. — С. 2208–2214. — ISSN 0002-7863. — doi:10.1021/ja00814a034.
  11. Sidney D. Ross, Morton Bassin, Manuel Finkelstein, William A. Leach. Molecular Compounds. I. Picryl Chloride-Hexamethylbenzene in Chloroform Solution (англ.) // Journal of the American Chemical Society. — 1954-01. — Vol. 76, iss. 1. — P. 69–74. — ISSN 1520-5126 0002-7863, 1520-5126. — doi:10.1021/ja01630a018.
  12. CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data, 2012-2013 / W.M. Haynes, David R. Lide, editors.. — 93rd edition. — Boca Raton, FL. — 1 online resource (volumes) с. — ISBN 978-1-4398-8050-0, 1-4398-8050-6.
  13. HENRY MONMOUTH SMITH. JOSEPH ACHILLE LE BEL: 1847–1930 // Torchbearers of Chemistry. — Elsevier, 1949. — С. 150. — ISBN 978-1-4831-9805-7.
  14. B. Franzus, P. J. Canterino, R. A. Wickliffe. TITANIUM TETRACHLORIDE-TRIALKYLALUMINUM COMPLEX—A CYCLIZING CATALYST FOR ACETYLENIC COMPOUNDS (англ.) // Journal of the American Chemical Society. — 1959-03. — Vol. 81, iss. 6. — P. 1514–1514. — ISSN 1520-5126 0002-7863, 1520-5126. — doi:10.1021/ja01515a061.
Эта страница в последний раз была отредактирована 26 марта 2022 в 22:31.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).