Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Газодинамический лазер

Из Википедии — свободной энциклопедии

Схема газодинамического лазера:
1. горючая смесь; 2. камера сгорания; 3. сопла, ускоряющие поток; 4. сверхзвуковой поток колебательно — возбуждённого газа; 5. резонатор лазера; 6. выброс отработанного газа

Газодинамический лазер — газовый лазер, в котором источником энергии рабочей среды является тепловая энергия нагретого и сжатого газа[1], а инверсная заселённость колебательно-возбуждённых состояний молекул создаётся из-за адиабатического охлаждения среды при истечении со сверхзвуковой скоростью через сопло[2].

Принцип работы

Принцип работы основан на особой температурной зависимости скорости колебательной релаксации. При нагреве многоатомного газа (в качестве такого «донорного»[2] газа может использоваться азот) до высокой температуры в камере сгорания, часть внутренней энергии накапливается в виде колебательного движения молекул. Если такой нагретый газ расширяется через сопло до сверхзвуковой скорости, то большая часть внутренней энергии преобразуется в кинетическую энергию потока и температура падает. При этом часть энергии остаётся запасённой в колебательно-возбуждённых состояниях молекул азота, поскольку понижение температуры сопровождается падением скорости колебательной релаксации. Возникающая инверсная заселённость верхних колебательных уровней используется для генерации лазерного излучения[1].

Газодинамический CO2-лазер

Внешние изображения
Схема уровней CO2 лазера

Колебательное возбуждение донорного азота позволяет реализовать газодинамический CO2- лазер. С первого колебательно-возбуждённого уровня азота (2330,7 см-1) возможна передача возбуждения находящейся в основном состоянии молекуле диоксида углерода с её переходом на верхний лазерный уровень (2349,2 см-1). В лазерном резонаторе таким образом возбуждённая молекула производит вынужденное излучение, переходя на один из двух возможных нижних лазерных уровней с генерацией излучения на длине волны 9,4-9,6 мкм или 10,4-10,6 мкм[3]. «Опустошение» нижних лазерных уровней, необходимое для восстановления инверсивной заселённости, осуществляет спонтанное излучение («радиационное опустошение») или специальные добавки в рабочую смесь — гелий, водяной пар. Последний выбор предпочтителен для лазеров большой мощности, так как отработанный газ обычно выбрасывается в атмосферу, что приводило бы к невосполнимым потерям дорогого гелия[4]. Такая же схема лазерной генерации используется в газоразрядном CO2-лазере, с тем лишь отличием, что возбуждение колебаний в азоте в последнем осуществляется при столкновении электронов газоразрядной плазмы с молекулами, с восполнением потерь энергии электронами за счёт электрического поля в разряде[4].

Примечания

Литература

  • Бирюков А. С. Газодинамический лазер // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017. — 2006. — Т. 6. — С. 265—266.
  • Бирюков А. С. Газодинамический лазер // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия (т. 1—2); Большая Российская энциклопедия (т. 3—5), 1988—1999. — ISBN 5-85270-034-7. — М., 1988. — Т. 1, Ааронова — Бома эффект — Длинные линии. — С. 381—382. — 707 с.
  • Карлов Н. В. CO2-лазеры // Лекции по квантовой электронике. — М.: Наука, 1983. — С. 149—173.. — 320 с.
  • В. К. Конюхов, “Газодинамические CO2-лазеры”, Квантовая электроника, 4:5 (1977), 1014–1022 [Sov J Quantum Electron, 7:5 (1977), 568–573]. www.mathnet.ru. Дата обращения: 11 апреля 2024.

Ссылки

Эта страница в последний раз была отредактирована 21 апреля 2024 в 17:42.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).