Ко второ́му пери́оду периоди́ческой систе́мы относятся элементы второй строки (или второго периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в химических свойствах элементов при увеличении атомного числа: новая строка начинается тогда, когда химические свойства повторяются, что означает, что элементы с аналогичными свойствами попадают в один и тот же вертикальный столбец. Второй период содержит больше элементов, чем предыдущий, в него входят: литий, бериллий, бор, углерод, азот, кислород, фтор и неон. Данное положение объясняется современной теорией строения атома.
Элементы
Группа | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
I | II | III | IV | V | VI | VII | VIII | |||||||||||
Символ | 3 Li |
4 Be |
5 B |
6 C |
7 N |
8 O |
9 F |
10 Ne |
Литий
Литий (Li) является химическим элементом с атомным номером 3, встречающимся в двух изотопах: 6Li и 7Li. При нормальной температуре и давлении литий — это серебристо-белый, мягкий щелочной металл с высокой реакционной способностью. Его плотность составляет 0.564 г/см³. Литий является самым лёгкий из всех металлов и наименее плотным из всех твёрдых элементов.[1] Наиболее распространённым в природе изотопом является литий-7, обозначающийся как 7Li, который составляет 92,5% всего лития. Такой изотоп состоит из трёх протонов и четырёх нейтронов.[2] Изотоп литий-6, обозначающийся 6Li, тоже стабилен, он содержит три протона и три нейтрона. Эти два изотопа составляют весь естественный литий на Земле, хотя искусственно были синтезированы и другие изотопы.[2] В ионных соединениях литий теряет электрон и становится положительно заряженным катионом Li+.
Согласно теории, Li является одним из немногих элементов, синтезированных в результате Большого Взрыва, вследствие чего его относят к списку изначальных элементов. Литий стоит на 33 месте среди самых распространённых элементов на Земле,[3] встречаясь в концентрациях от 20 до 70 миллионных долей по весу,[4] но из-за его высокой реакционной способности в природе он встречается только в виде соединений. Наиболее богатым источником литий-содержащих соединений являются гранитные пегматиты, а также сподумен и петалит, которые являются наиболее коммерчески целесообразными источниками этого элемента.[4] Металл выделяется электролитически из смеси хлорида лития и хлорида калия.
Соли лития используются в фармакологической промышленности как лекарственное средство для стабилизации настроения.[5][6] Они используются также при лечении биполярного расстройства, где играют определённую роль в лечении депрессии и мании, и могут уменьшить шансы суицида.[7] Наиболее распространёнными из применяемых соединений лития являются карбонат лития Li2CO3, цитрат лития Li3C6H5O7, сульфат лития Li2SO4 и оротат лития LiC5H3N2O4·H2O. Литий используется также в качестве анода в литиевых батареях, а его сплавы с алюминием, кадмием, медью и марганцем используются для высокопрочных частей самолетов и космических аппаратов, например, для внешнего топливного бака космического корабля Спейс шаттл.[1]
Бериллий
Бериллий (Be) является химическим элементом с атомным номером 4, существующем в виде 9Be. При нормальной температуре и давлении бериллий является твёрдым, лёгким, хрупким, двухвалентным щёлочноземельным металлом серо-стального цвета, с плотностью 1,85 г/см³.[8] Он обладает одной из самых высоких температур плавления среди всех лёгких металлов. Наиболее распространенным изотопом бериллия является 9Be, который содержит 4 протона и 5 нейтронов. Он составляет почти 100% всего природного бериллия, и является единственным стабильным изотопом, однако искусственно были синтезированы и другие изотопы. В ионных соединенийях бериллий теряет два валентных электрона с образованием катиона Be2+.
Небольшое количество атомов бериллия было синтезировано во время Большого Взрыва, хотя большинство из них распались или участвовали в дальнейшем в атомных реакциях при создания более крупных ядер, таких как углерод, азот и кислород. Бериллий является одним из компонентов в 100 из более 4000 известных минералов, таких как бертрандит Be4Si2O7(OH)2, берилл Al2Be3Si6O18, хризоберилл Al2BeO4 и фенакит Be2SiO4. Драгоценные формы берилла — аквамарин, берилл красный и изумруд. Наиболее распространенными источниками бериллия, используемого в коммерческих целях, являются берилл и бертрандит, и при его производстве используется реакция восстановления фторида бериллия с помощью металлического магния или электролиз расплавленного хлорида бериллия, содержащего некоторое количество хлорида натрия, поскольку хлорид бериллия является плохим проводником электричества.[8]
Благодаря высокой жёсткости, легкому весу и стабильности размеров в широком диапазоне температур, металлический бериллий используется в качестве конструкционного материала в авиации, ракетной технике и спутниковой связи.[8] Он используется в качестве легирующей добавки в бериллиевой бронзе, которая используется в электрических компонентах ввиду её высокой электро- и теплопроводности.[9] Листы бериллия используются в рентгеновских детекторах для фильтрации видимого света и пропуска только рентгеновских лучей.[8] Он используется в качестве замедлителя нейтронов в ядерных реакторах, поскольку лёгкие ядра более эффективны в замедлении нейтронов, чем тяжёлые.[8] Низкий вес и высокая жёсткость бериллия делают полезным его применение в высокочастотных громкоговорителях (твитерах).[10]
Бериллий и его соединения отнесены Международным агентством по изучению рака к 1 группе канцерогенов. Они обладают канцерогенными свойствами как для людей, так и для животных.[11] Хронический бериллиоз является лёгочным, гранулёматозным заболеванием большого круга кровообращения, вызванным воздействием бериллия. Приблизительно 1% - 15% людей чувствительны к бериллию, и у них могут развиться воспалительные реакции дыхательной системы и кожи, которые называются хронической бериллиевой болезнью или бериллиозом. Иммунная система организма распознаёт бериллий как инородные частицы и подготавливает против них атаку, как правило, в лёгких, через которые эти частицы вдыхаются. Эта реакция может вызвать лихорадку, усталость, слабость, ночные потовыделения и затруднение дыхания.[12]
Бор
Бор (B) является химическим элементом с атомным номером 5, существующем в виде 10B и 11B. При нормальной температуре и давлении бор является трёхвалентным металлоидом, имеющем несколько аллотропных форм. Аморфный бор представляет собой коричневый порошок, образующийся как продукт многих химических реакций. Кристаллический бор является очень твёрдым, чёрным материалом с высокой температурой плавления, существующем во многих полиморфных модификациях. Наиболее распространёнными являются две ромбоэдрические модификации: α-бор и β-бор, содержащие 12 и 106,7 атомов в ромбоэдрической ячейке соответственно, и 50-атомный бор с тетрагональной решёткой. Бор имеет плотность 2,34 г/см³.[13] Наиболее распространённым в природе изотопом бора является 11B (80,22% от всего бора), содержащий 5 протонов и 6 нейтронов. Другой встречающийся изотоп 10B (19,78%) содержит 5 протонов и 5 нейтронов.[14] Но это только стабильные изотопы, а искусственно были синтезированы и другие. Бор создаёт ковалентные связи с другими неметаллами и имеет степень окисления 1, 2, 3 и 4.[15][16][17] В свободном виде в природе бор не встречается, а встречается в таких соединениях, как бораты. Наиболее распространёнными источниками бора являются турмалин, бура Na2B4O5(OH)4·8H2O и кернит Na2B4O5(OH)4·2H2O.[13] Чистый бор получить довольно трудно. Сделать это можно путём его восстановления магнием из оксида бора B2O3. Этот оксид получают путём плавления борной кислоты B(OH)3, которая в свою очередь получается из буры. Небольшое количество чистого бора можно получить путём термического разложения трибромида бора BBr3 в газообразном водороде над горячей проволокой из вольфрама или тантала; последние действуют в качестве катализаторов.[13] Коммерчески наиболее важными источниками бора являются: пентагидрат тетрабората натрия Na2B4O7 · 5H2O, который в больших количествах используется при производстве изоляционного стекловолокна и отбеливателя из пербората натрия; карбид бора, керамический материал, используемый для изготовления бронированных изделий, особенно бронежилетов для солдат и сотрудников полиции; ортоборная кислота H3BO3 и борная кислота, используемые в производстве текстильного стекловолокна и плоскопанельных дисплеев; декагидрат тетрабората натрия Na2B4O7 · 10H2O и бура, используемые в производстве клеев; наконец, изотоп бор-10 используется в управлении ядерными реакторами в качестве защиты от ядерного излучения и в приборах для обнаружения нейтронов.[14]
Бор является одним из важнейших микроэлементов растений, необходимый для создания и роста прочных клеточных мембран, деления клеток, развития семян и плодов, транспортировки сахаров и развития гормонов.[18][19] Однако концентрация его в почве более 1.0 мд может вызвать некроз листьев и плохой рост. Уровень около 0.8 мд может вызвать эти же симптомы у растений особенно чувствительных к бору. У большинства растений, даже не слишком чувствительных к наличию бора в почве, признаки отравления бором появляются при уровне выше 1.8 мд.[14] В организме животных бор является ультраразличимым элементом (англ.). В диете человека ежедневный приём составляет 2.1-4.3 мг бора в день на килограмм массы тела.[20] Он также используется как добавка для профилактики и лечения остеопороза и артрита.[21]
Углерод
Углерод (C) является химическим элементом с атомным номером 6, встречающемся в природе в виде 12C, 13C и 14C.[22] При нормальной температуре и давлении углерод является твёрдым веществом, существующем в различных аллотропных формах, наиболее распространенными из которых являются графит, алмаз, фуллерены и аморфный углерод.[22] Графит — мягкий, матово-чёрный полуметалл с гексагональной кристаллической решёткой, с очень хорошими проводящими и термодинамически стабильными свойствами. Алмаз имеет весьма прозрачные бесцветные кристаллы с кубической решёткой и с плохими проводящими свойствами, он является самым твёрдым из известных естественных минералов и имеет самый высокий показатель преломления среди всех драгоценных камней. В отличие от структур алмаза и графита типа кристаллической решётки, фуллерены, названные в честь Ричарда Бакминстера Фуллера, являются веществами, архитектура которых напоминает молекулы. Есть несколько различных фуллеренов, наиболее известным из которых является «бакминстерфуллерен» C60, название которого также связано с именем Ричарда Бакминстера Фуллера. Пространственная структура этого фуллерена напоминает геодезический купол, изобретённый Фуллером. О фуллеренах известно пока немного, они являются предметом интенсивных исследований.[22] Существует также аморфный углерод, который не имеет кристаллической структуры.[23] В минералогии этот термин используется для ссылки на сажу и уголь, хотя они не являются строго аморфными, поскольку содержат небольшое количество графита или алмаза.[24][25] Наиболее распространённым изотопом углерода является 12C с шестью протонами и шестью нейтронами (98,9% от общего количества).[26] Стабилен также изотоп 13C с шестью протонами и семью нейтронами (1,1%).[26] Ничтожные количества 14C также встречаются в природе, но этот изотоп является радиоактивным и распадается с периодом полураспада 5730 лет. Он используется в методе радиоуглеродного датирования.[27] Искусственно синтезированы также другие изотопы углерода. Углерод образует ковалентные связи с другими неметаллами со степенью окисления -4, -2, +2 и +4.[22]
Углерод является четвёртым по распространённости элементом во Вселенной по массе после водорода, гелия и кислорода,[28] вторым в организме человека по массе после кислорода[29] и третьим по числу атомов.[30] Существует чуть ли не бесконечное число соединений, содержащих углерод, благодаря способности углерода к образованию стабильной связи C — С.[31][32] Простейшими углеродосодержащими молекулами являются углеводороды,[31] которые включают углерод и водород, хотя иногда они содержат в функциональных группах и другие элементы. Углеводороды используются в качестве топлива, для производства пластмасс и в нефтехимии. Все органические соединения, необходимые для жизни, содержат по меньшей мере один атом углерода.[31][32] В соединении с кислородом и водородом углерод может образовывать многие группы важных биологических соединений,[32] включая сахара, лигнаны, хитины, спирты, жиры и ароматические эфиры, каротиноиды и терпены. С азотом он образует алкалоиды, а с добавлением серы формирует антибиотики, аминокислоты и резину. С добавлением фосфора к этим элементам углерод формирует ДНК и РНК, химические коды носителей жизни, и аденозинтрифосфаты (АТФ), являющиеся наиболее важными переносчиками энергии для молекул во всех живых клетках.[32]
Азот
Азот (N) является химическим элементом с атомным номером семь и атомной массой 14,00674. При стандартных условиях азот в природе представляет собой инертный двухатомный газ без цвета, вкуса и запаха, составляющий 78,08% от объёма атмосферы Земли. Азот был открыт как составная компонента воздуха шотландским врачом Даниэлем Резерфордом в 1772 году.[33] В природе он встречается в виде двух изотопов: азот-14 и азот-15.[34]
Многие важные для промышленности вещества, такие как аммиак, азотная кислота, органические нитраты (ракетное топливо, взрывчатые вещества) и цианиды, содержат азот. В химии элементарного азота преобладает чрезвычайно сильная химическая связь, в результате чего возникают трудности как для организмов, так и при промышленном производстве в разрушении этой связи при преобразовании молекулы N2 в полезные соединения. Но в то же время такое успешное преобразование вызывает потом высвобождение большого количества энергии, если такие соединения сжечь, взорвать или другим способом преобразовать азот обратно в газообразное двухатомное состояние.
Азот присутствет во всех живых организмах, а круговорот азота описывает движение элемента из воздуха в биосферу и органические соединения, и затем обратно в атмосферу. Искусственно произведённые нитраты являются ключевыми ингредиентами промышленных удобрений, а также основными загрязняющими веществами при возникновении эвтрофикации водных систем. Азот является составной частью аминокислот, а, следовательно, белков и нуклеиновых кислот (ДНК и РНК). Он находится в химической структуре практически всех нейротрансмиттеров и является определяющим компонентом алкалоидов и биологических молекул, производимых многими организмами.[35]
Кислород
Кислород (O) является химическим элементом с атомным номером 8, встречающемся в природе в виде 16O, 17O и 18O, среди которых самым распространённым изотопом является 16O.[36]
Фтор
Фтор (F) является химическим элементом с атомным номером 9, имеющем единственный стабильный изотоп 19F.[37] Чрезвычайно химически активный неметалл и сильнейший окислитель.
Неон
Неон (Ne) является химическим элементом с атомным номером 10, встречающемся в природе в виде 20Ne, 21Ne и 22Ne.[38]
Примечания
- ↑ 1 2 Lithium Архивная копия от 17 октября 2017 на Wayback Machine at WebElements.
- ↑ 1 2 Isotopes of Lithium . Berkley Lab, The Isotopes Project. Дата обращения: 21 апреля 2008. Архивировано 31 июля 2012 года.
- ↑ Krebs, Robert E. The History and Use of Our Earth's Chemical Elements: A Reference Guide (англ.). — Westport, Conn.: Greenwood Press, 2006. — P. 47—50. — ISBN 0-313-33438-2.
- ↑ 1 2 Kamienski et al. "Lithium and lithium compounds". Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. Published online 2004. doi:10.1002/0471238961.1209200811011309.a01.pub2
- ↑ Cade J. F. J. Lithium salts in the treatment of psychotic excitement (англ.) // Medical Journal of Australia : journal. — 1949. — Vol. 2, no. 10. — P. 349—352. — PMID 18142718. Архивировано 25 мая 2006 года.
- ↑ P. B. Mitchell,D. Hadzi-Pavlovic. Lithium treatment for bipolar disorder (англ.) // Bulletin of the World Health Organization . — World Health Organization, 2000. — Vol. 78, no. 4. — P. 515—517. — PMID 10885179. — PMC 2560742. Архивировано 25 мая 2006 года.
- ↑ Baldessarini R. J., Tondo L., Davis P., Pompili M., Goodwin F. K., Hennen J. Decreased risk of suicides and attempts during long-term lithium treatment: a meta-analytic review (англ.) // Bipolar disorders : journal. — 2006. — October (vol. 8, no. 5 Pt 2). — P. 625—639. — doi:10.1111/j.1399-5618.2006.00344.x. — PMID 17042835.
- ↑ 1 2 3 4 5 Beryllium Архивная копия от 13 мая 2011 на Wayback Machine at WebElements.
- ↑ Standards and properties Архивная копия от 24 декабря 2012 на Wayback Machine of beryllium copper.
- ↑ Information Архивная копия от 28 мая 2013 на Wayback Machine about beryllium tweeters.
- ↑ IARC Monograph, Volume 58 . International Agency for Research on Cancer (1993). Архивировано 31 июля 2012 года.
- ↑ Information Архивная копия от 31 марта 2001 на Wayback Machine about chronic beryllium disease.
- ↑ 1 2 3 Boron Архивная копия от 13 мая 2011 на Wayback Machine at WebElements.
- ↑ 1 2 3 Properties Архивная копия от 26 сентября 2018 на Wayback Machine of boron.
- ↑ W.T.M.L. Fernando, L.C. O'Brien, P.F. Bernath. Fourier Transform Spectroscopy: B4Σ−−X4Σ− (PDF). University of Arizona, Tucson. Архивировано 31 июля 2012 года.
- ↑ K.Q. Zhang, B.Guo, V. Braun, M. Dulick, P.F. Bernath. Infrared Emission Spectroscopy of BF and AIF (PDF). University of Waterloo, Waterloo, Ontario. Архивировано 31 июля 2012 года.
- ↑ Compound Descriptions: B2F4 . Landol Börnstein Substance/Property Index. Дата обращения: 26 марта 2022. Архивировано 29 октября 2021 года.
- ↑ Functions of Boron in Plant Nutrition (PDF). U.S. Borax Inc.. Архивировано из оригинала 18 августа 2003 года.
- ↑ Blevins, Dale G.; Lukaszewski, Krystyna M. Functions of Boron in Plant Nutrition (англ.) // Plant Physiology : journal. — American Society of Plant Biologists, 1998. — Vol. 49. — P. 481—500. — doi:10.1146/annurev.arplant.49.1.481. — PMID 15012243.
- ↑ Zook EG and Lehman J. 850-5 // J. Assoc. Off Agric. Chem. — 1965. — Т. 48.
- ↑ Boron . PDRhealth. Дата обращения: 18 сентября 2008. Архивировано 24 мая 2008 года.
- ↑ 1 2 3 4 Carbon Архивная копия от 13 мая 2011 на Wayback Machine at WebElements.
- ↑ Amorphous carbon // IUPAC Compendium of Chemical Terminology. — 2nd. — International Union of Pure and Applied Chemistry, 1997.
- ↑ Vander Wal, R. Soot Precursor Material: Spatial Location via Simultaneous LIF-LII Imaging and Characterization via TEM (англ.) // NASA Contractor Report : journal. — 1996. — May (no. 198469). Архивировано 17 июля 2009 года. Архивированная копия . Дата обращения: 16 мая 2011. Архивировано из оригинала 17 июля 2009 года.
- ↑ diamond-like carbon films // IUPAC Compendium of Chemical Terminology. — 2nd. — International Union of Pure and Applied Chemistry, 1997.
- ↑ 1 2 Presentation about isotopes by Mahananda Dasgupta of the Department of Nuclear Physics at Australian National University.
- ↑ Plastino, W.; Kaihola, L.; Bartolomei, P.; Bella, F. Cosmic Background Reduction In The Radiocarbon Measurement By Scintillation Spectrometry At The Underground Laboratory Of Gran Sasso (англ.) // Radiocarbon : journal. — 2001. — Vol. 43, no. 2A. — P. 157—161. Архивировано 27 мая 2008 года. Архивированная копия . Дата обращения: 16 мая 2011. Архивировано из оригинала 27 мая 2008 года.
- ↑ Ten most abundant elements in the universe, taken from The Top 10 of Everything, 2006, Russell Ash, page 10. Архивировано 10 февраля 2010 года.
- ↑ Chang, Raymond. Chemistry, Ninth Edition. — McGraw-Hill Education, 2007. — С. 52. — ISBN 0-07-110595-6.
- ↑ Freitas Jr., Robert A. Nanomedicine, (итал.). — Landes Bioscience , 1999. — С. Tables 3—1 & 3—2. — ISBN 1570596808. Архивная копия от 16 апреля 2018 на Wayback Machine
- ↑ 1 2 3 Structure and Nomenclature of Hydrocarbons . Purdue University. Архивировано 31 июля 2012 года.
- ↑ 1 2 3 4 Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Molecular Biology of the Cell. — Garland Science .
- ↑ Lavoisier, Antoine Laurent. Elements of chemistry, in a new systematic order: containing all the modern discoveries (англ.). — Courier Dover Publications, 1965. — P. 15. — ISBN 0486646246.
- ↑ Nitrogen Архивная копия от 28 сентября 2013 на Wayback Machine at WebElements.
- ↑ Rakov, Vladimir A.; Uman, Martin A. Lightning: Physics and Effects. — Cambridge University Press, 2007. — С. 508. — ISBN 9780521035415.
- ↑ Oxygen Nuclides / Isotopes . EnvironmentalChemistry.com. Архивировано 18 августа 2020 года.
- ↑ National Nuclear Data Center. NuDat 2.1 database – fluorine-19 . Brookhaven National Laboratory. Архивировано 31 июля 2012 года.
- ↑ Neon: Isotopes . Softciências. Архивировано 31 июля 2012 года.
Ссылки

Обычно почти сразу, изредка в течении часа.