Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Волоконно-оптический гироскоп

Из Википедии — свободной энциклопедии

По круговому оптическому пути благодаря расщепителю луча свет распространяется в двух противоположных направлениях.

Волоконно-оптический гироскоп (ВОГ) — это оптико-электронный прибор, измеряющий абсолютную (относительно инерциального пространства) угловую скорость[1]. Как и у всех оптических гироскопов, принцип работы основан на эффекте Саньяка.

Луч света в волоконно-оптическом гироскопе проходит через катушку оптоволокна, отсюда и название. Для повышения чувствительности гироскопа используют световод большой длины (порядка 1000 метров), уложенный витками. В отличие от кольцевого лазерного гироскопа, в волоконно-оптических гироскопах обычно используется свет с очень маленькой длиной когерентности, что необходимо для увеличения точности гироскопа до удовлетворительного уровня. В качестве источника света может использоваться даже не лазерный прибор, а, например, светодиод.

Принцип работы

В самом опыте Саньяка сколлимированный и поляризованный пучок света заводился в интерферометр, в котором разделялся на два пучка, обходивших интерферометр в противоположных направлениях. После обхода пучки совмещались и интерференционная картина регистрировалась на фотопластинке. Эксперименты показали, что при вращении установки интерференционная картина сдвигалась, причем сдвиг оказался пропорциональным скорости вращения.

Использование оптического волокна позволяет избавиться от зеркал и увеличить длину оптического пути, от которого в свою очередь зависит детектируемая разность фаз:

где — возникающая разность фаз, — радиус контура, — длина оптического волокна, — длина волны оптического излучения, — скорость света в вакууме, — угловая скорость.

Рисунок 1. Простейшая конструкция волоконно-оптического гироскопа: излучение через делительную пластину распространяется по волокну в противоположных направлениях, после чего результат интерференции попадает на светочувствительный детектор.

В отсутствие угловой скорости разность фаз равна нулю, и фоточувствительный элемент будет регистрировать максимум интенсивности. При возникновении угловой скорости произойдет кратное изменение разности фаз между излучениями. Изменение интенсивности на фотоприемном устройстве описывается следующим уравнением:

Зная, что фаза может изменяться от до можно с уверенностью детектировать соответствующий диапазон угловых скоростей:

Если контур длиной 10 км намотать радиусом 30 см, то с источником оптического излучения на длине волны 1550 нм диапазон детектируемый угловых скоростей составит 4.4 градусов в секунду[2]. Используя качественные аналого-цифровые преобразователи, можно детектировать изменения фазы вплоть до микрорадиан, а значит чувствительность такой системы составит порядка 0.005 градусов в час.

Базовая схема такого гироскопа имеет набор ограничений:

  • Симметричность функции интерференции не позволяет определить направление вращения.
  • Нелинейность передаточной характеристики вызывает неравномерность чувствительности гироскопа.
  • Диапазон детектируемых угловых скоростей недостаточен для применения ВОГ в навигации.
  • Переход за детектируемый диапазон (больше ) может быть некорректно интерпретирован.

В схеме современных волоконно-оптических гироскопов применяются техники на основе частотных и фазовых модуляторов.

Частотные модуляторы переводят фазу Саньяка в переменные изменения разности частот противоположно бегущих лучей, поэтому при компенсации фазы Саньяка разностная частота пропорциональна угловой скорости вращения Ω. Частотные модуляторы основаны на акустооптическом эффекте, который состоит в том, что при прохождении в среде ультразвуковых колебании в ней появляются области с механическими напряжениями (областями сжатия и разрежения), это приводит к изменению коэффициента преломления среды. Вызванные ультразвуковой волной изменения коэффициента преломления среды образуют центры дифракции для падающего света. Частотный сдвиг света определяется частотой ультразвуковых колебаний. Достоинством частотных модуляторов при использовании в ВОГ является представление выходного сигнала в цифровом виде.

Фазовые модуляторы переводят фазу Саньяка в изменение амплитуды переменного сигнала, что исключает низкочастотные шумы и облегчает измерение информационного параметра.

В оптимальную конфигурацию ВОГ входит[2]:

  • Широкополосный источник оптического излучения (суперлюминесцентный диод или эрбиевый волоконный источник оптического излучения);
  • Волоконно-оптический разветвитель или циркулятор;
  • Многофункциональная интегрально-оптическая схема (МИОС), выполненная из кристалла ниобата лития и выполняющая одновременно функции поляризатора, разветвителя и электро-оптического модулятора;
  • Волоконно-оптический контур Саньяка, являющийся чувствительным элементом ВОГ;
  • Фотоприёмник для детектирования оптического излучения;
  • Аналогово-цифровой преобразователь для перевода аналогового сигнала, поступающего от фотоприёмника, в цифровой;
  • Цифро-аналоговый преобразователь для управления модуляцией МИОС;
  • Цифровой процессор, который обрабатывает полученный сигнал, получая на выходе сведения об угловой скорости и который управляет работой ВОГ.

Свойства прибора

Появлению такого прибора, как волоконно-оптический гироскоп, способствовало развитие волоконной оптики, а именно разработка одномодового диэлектрического световода со специальными характеристиками (устойчивая поляризация встречных лучей, высокая оптическая линейность, достаточно малое затухание). Именно такие световоды определяют уникальные свойства прибора:

  • потенциально высокая точность;
  • малые габариты и масса конструкции;
  • большой диапазон измеряемых угловых скоростей;
  • высокая надёжность, благодаря отсутствию вращающихся частей прибора.

Применение

Широко применяется в инерциальных навигационных системах среднего класса точности. БИНС на основе ВОГ применяются в навигации для наземного транспорта, кораблей, подводных лодок и спутников[3].

В России

В России производством и исследованием современных волоконно-оптических гироскопов и приборов на их основе занимаются ряд центров:

Кроме того, группы учёных в ПНИПУ, ИТМО[6], ЛЭТИ и СГУ[7] ведут исследовательскую и образовательную деятельность по улучшению характеристик волоконно-оптических гироскопов и приборов на их основе.

Примечания

  1. Vali, V.; Shorthill, R. W. (1976). “Fiber ring interferometer”. Applied Optics. 15 (5): 1099—100. Bibcode:1976ApOpt..15.1099V. DOI:10.1364/AO.15.001099. PMID 20165128.
  2. 1 2 Hervé C. Lefèvre. The fiber-optic gyroscope. — Second edition. — Boston, 2014. — 1 online resource с. — ISBN 978-1-60807-696-3, 1-60807-696-2, 978-1-5231-1764-2, 1-5231-1764-8.
  3. Ю. Н. Коркишко, В. А. Федоров, В. Е. Прилуцкий, В. Г. Пономарев, И. В. Морев,С.Ф.Скрипников, М.И.Хмелевская, А.С.Буравлев, С.М.Кострицкий, А.И.Зуев, В.К.Варнаков. Бесплатформенные инерциальные навигационные системы на основе волоконно-оптических гироскопов (рус.) // Гироскопия и навигация : журнал. — 2014. — Т. 1, № 84. — С. 14-25. — ISSN 0869-7035.
  4. ООО Научно-Производственная Компания "Оптолинк" | Научно-производственная Компания "Оптолинк". www.optolink.ru. Дата обращения: 27 апреля 2022. Архивировано 15 июня 2021 года.
  5. Физоптика. www.fizoptika.ru. Дата обращения: 27 апреля 2022. Архивировано 2 апреля 2022 года.
  6. Волоконно-оптический гироскоп. sf.itmo.ru. Дата обращения: 27 апреля 2022.
  7. Волоконно-оптические и лазерные гироскопы | СГУ - Саратовский государственный университет. www.sgu.ru. Дата обращения: 27 апреля 2022.

Литература

См. также

Эта страница в последний раз была отредактирована 16 октября 2023 в 09:39.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).