Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Линейная рекуррентная последовательность

Из Википедии — свободной энциклопедии

Линейной рекуррентной последовательностью (линейной рекуррентой) называется всякая числовая последовательность , задаваемая линейным рекуррентным соотношением:

для всех

с заданными начальными членами , где d — фиксированное натуральное число,  — заданные числовые коэффициенты, . При этом число d называется порядком последовательности.

Линейные рекуррентные последовательности иногда называют также возвратными последовательностями.

Теория линейных рекуррентных последовательностей является точным аналогом теории линейных дифференциальных уравнений с постоянными коэффициентами.

Примеры

Частными случаями линейных рекуррентных последовательностей являются последовательности:

Формула общего члена

Для линейных рекуррентных последовательностей существует формула, выражающая общий член последовательности через корни её характеристического многочлена

А именно, общий член выражается в виде линейной комбинации последовательностей вида

где — корень характеристического многочлена и — целое неотрицательное число меньшее, чем кратность .

Для чисел Фибоначчи такой формулой является формула Бине.

Пример

Для нахождения формулы общего члена последовательности , удовлетворяющей линейному рекуррентному уравнению второго порядка с начальными значениями , , следует решить характеристическое уравнение

.

Если уравнение имеет два различных корня и , отличных от нуля, то для произвольных постоянных и , последовательность

удовлетворяет рекурентному соотношению; остаётся найти числа и , что

и .

Если же дискриминант характеристического уравнения равен нулю и значит уравнение имеет единственный корень , то для произвольных постоянных и , последовательность

удовлетворяет рекурентному соотношению; остаётся найти числа и , что

и .

В частности, для последовательности, определяемой следующим линейным рекуррентным уравнением второго порядка

; , .

корнями характеристического уравнения являются , . Поэтому

.

Окончательно:

Приложения

Линейные рекуррентные последовательности над кольцами вычетов традиционно используются для генерации псевдослучайных чисел.

История

Основы теории линейных рекуррентных последовательностей были даны в двадцатых годах восемнадцатого века Абрахамом де Муавром и Даниилом Бернулли. Леонард Эйлер изложил её в тринадцатой главе своего «Введения в анализ бесконечно-малых» (1748).[1] Позднее Пафнутий Львович Чебышёв и ещё позже Андрей Андреевич Марков изложили эту теорию в своих курсах исчисления конечных разностей.[2][3]

См. также

Примечания

  1. Л. Эйлер, Введение в анализ бесконечно-малых, т. I, M. — Л., 1936, стр. 197–218
  2. П. Л.Чебышев, Теория вероятностей, лекции 1879–1880 гг., М. — Л., 1936, стр. 139–147
  3. А. А. Марков, Исчисление конечных разностей, 2-е изд., Одесса, 1910, стр. 209–239

Литература

Эта страница в последний раз была отредактирована 30 октября 2023 в 18:17.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).