Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Дифференциальная форма

Из Википедии — свободной энциклопедии

Дифференциа́льная фо́рма порядка , или -форма, — кососимметрическое тензорное поле типа на многообразии.

Дифференциальные формы были введены Эли Картаном в начале XX века.

Формализм дифференциальных форм оказывается удобен во многих разделах теоретической физики и математики, в частности, в теоретической механике, симплектической геометрии, квантовой теории поля.

Пространство -форм на многообразии обычно обозначают .

Определения

Инвариантное

В дифференциальной геометрии дифференциальная форма степени , или просто -форма, — это гладкое сечение , то есть внешней степени кокасательного расслоения многообразия. В частности,

  • значение -формы на наборе из штук касательных векторных полей есть функция на многообразии.
  • значение -формы в точке многообразия есть кососимметрический -линейный функционал на .

Через локальные карты

-формой на будем называть выражение следующего вида

где  — гладкие функции,  — дифференциал -ой координаты (функция от вектора, возвращающая его координату с номером  ), а  — внешнее произведение. При смене координат это представление меняет форму.

На гладком многообразии k-формы могут быть определены как формы на картах, которые согласованы на склейках (для точного определения согласованности см. многообразие).

Связанные определения

  • Для -формы
её внешний дифференциал (также просто дифференциал) — это -форма, в координатах имеющая вид
  • для инвариантного определения дифференциала нужно определить дифференциал функций, то есть -форм, затем дифференциал -форм, после чего на произвольные формы дифференциал продолжается по -линейности и градуированному правилу Лейбница:
    • — значение дифференциала функции на касательном векторном поле есть производная функции вдоль поля.
    • — значение дифференциала -формы на паре векторных полей есть разность производных значений формы на одном поле вдоль другого, подправленная на значение формы на коммутаторе.
    • — где верхние индексы и обозначают порядки соответствующих форм.
  • Дифференциальная форма называется замкнутой, если её внешний дифференциал равен 0.
  • k-форма называется точной, если её можно представить как дифференциал некоторой -формы.
  • Факторгруппа замкнутых k-форм по точным k-формам называется -мерной группой когомологий де Рама. Теорема де Рама утверждает, что она изоморфна k-мерной группе сингулярных когомологий.
  • Внутренней производной формы степени по векторному полю (также подстановкой векторного поля в форму) называется форма

Свойства

  • Для любой формы справедливо .
  • Внешнее дифференцирование линейно и удовлетворяет градуированному правилу Лейбница:
  • Внутренняя производная линейна и удовлетворяет градуированному правилу Лейбница:
  • Формулы Картана. Для произвольной формы и векторных полей выполняются следующие соотношения
    (волшебная формула Картана)
где обозначает производную Ли.

Примеры

  • С точки зрения тензорного анализа 1-форма есть не что иное, как ковекторное поле, то есть 1 раз ковариантный тензор, заданный в каждой точке многообразия и отображающий элементы касательного пространства в множество вещественных чисел :
  • Форма объёма — пример -формы на -мерном многообразии.
  • Симплектическая форма — замкнутая 2-форма на -многообразии, такая что .

Применения

Векторный анализ

Дифференциальные формы позволяют записать основные операции векторного анализа в координатно-инвариантном виде и обобщить их на пространства любой размерности. Пусть  — канонический изоморфизм между касательным и кокасательным пространствами, а  — оператор дуальности Ходжа (который, в частности, в трёхмерном пространстве реализует изоморфизм между 2-формами и векторными полями, а также между скалярами и псевдоскалярами). Тогда ротор и дивергенцию можно определить следующим способом:

Дифференциальные формы в электродинамике

Максвелловская электродинамика весьма изящно формулируется на языке дифференциальных форм в 4-мерном пространстве-времени. Рассмотрим 2-форму Фарадея, соответствующую тензору электромагнитного поля:

Эта форма является формой кривизны тривиального главного расслоения со структурной группой U(1), с помощью которого могут быть описаны классическая электродинамика и калибровочная теория. 3-форма тока, дуальная обычному 4-вектору тока, имеет вид

В этих обозначениях уравнения Максвелла могут быть очень компактно записаны как

где  — оператор звезды Ходжа. Подобным образом может быть описана геометрия общей калибровочной теории.

2-форма также называется 2-формой Максвелла.

Гамильтонова механика

С помощью дифференциальных форм можно сформулировать гамильтонову механику чисто геометрически. Рассмотрим симплектическое многообразие с заданными на нём симплектической формой и функцией , называемой функцией Гамильтона. задаёт в каждой точке изоморфизм кокасательного и касательного пространств по правилу

,

где  — дифференциал функции . Векторное поле на многообразии называется гамильтоновым полем, а соответствующий ему фазовый поток — гамильтоновым потоком. Гамильтонов фазовый поток сохраняет симплектическую форму, а следовательно, сохраняет и любую её внешнюю степень. Отсюда следует теорема Лиувилля. Скобка Пуассона функций и на определяется по правилу

Вариации и обобщения

Помимо вещественно- и комплекснозначных форм, часто также рассматриваются дифференциальные формы со значениями в векторных расслоениях. В этом случае в каждой точке задаётся полилинейная антисимметричная функция от векторов из касательного расслоения, возвращающая вектор из слоя над этой точкой. Формально внешние k-формы на со значениями в векторном расслоении определяются как сечения тензорного произведения расслоений

Частный случай векторнозначных дифференциальных форм — тангенциальнозначные формы, в определении которых в качестве векторного расслоения берётся касательное расслоение .

Литература

  • Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — М.: Едиториал УРСС, 2003. — 416 с. — 1500 экз. — ISBN 5-354-00341-5.
  • Годбийон К. Дифференциальная геометрия и аналитическая механика. — М.: Мир, 1973.
  • Дубровин Б. А., Новиков С. П., Фоменко А. Т. Современная геометрия. Методы и приложения. — М.: Наука, 1971.
  • Картан А. Дифференциальное исчисление. Дифференциальные формы. — М.: Мир, 1971.
  • Постников М. М. Лекции по геометрии. Семестр III. Гладкие многообразия. — М.: Наука, 1987.
  • Булдырев В. С., Павлов Б. С. Линейная алгебра и функции многих переменных. — Л.: Издательство Ленинградского университете, 1985.

См. также

Эта страница в последний раз была отредактирована 28 ноября 2023 в 18:13.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).