Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Это зацепление из четырёх компонент брунново.
Брунново зацепление с шестью компонентами.

В теории узлов брунново зацепление — это нетривиальное зацепление, которое распадается при удалении любой компоненты. Другими словами, разрезание любого (топологического) кольца расцепляет все остальные кольца (стало быть, никакие два из колец не сцеплены, как в зацеплении Хопфа).

Название брунново дано в честь Германа Брунна, который в статье 1892 года Über Verkettung привёл примеры таких зацеплений.

Примеры

Кольца Борромео являются простейшим брунновым зацеплением.

Наиболее известным и самым простым брунновым зацеплением являются кольца Борромео, зацепление трёх колец. Однако для любого числа, начиная с трёх, существует бесконечное число брунновых зацеплений, содержащее такое число колец. Существует несколько относительно простых зацеплений из трёх компонент, которые не эквивалентны кольцам Борромео:

Простейшее брунново зацепление, отличное от колец Борромео (имеющих 6 пересечений), по-видимому, зацепление L10a140[en] с 10 пересечениями[1].

Пример n-компонентного бруннова зацепления — это брунново зацепление «резиновых колец», где каждая компонента оборачивает предыдущую по схеме aba−1b−1 и последнее кольцо зацепляется за первое, образуя цикл.

Классификация

Брунновы зацепления описаны с точностью до гомотопии Джоном Милнором в статье 1954 года [2], и инварианты, введённые им, теперь называются инвариантами Милнора

(n + 1)-компонентное зацепление можно понимать как элемент группы зацепления[en] n незацеплённых компонент (группа зацепления в этом случае является фундаментальной группой дополнения зацепления[en]). Группа зацепления n незацеплённых компонент является свободным произведением n образующих, то есть свободной группой Fn.

Не любой элемент группы Fn порождает брунново зацепление. Милнор показал, что группа элементов, соответствующих брунновым зацеплениям, связана с градуированной алгеброй Ли[en] нижнего центрального ряда свободной группы, и её можно понимать как «соотношения» в свободной алгебре Ли[en].

Произведения Масси

Брунновы зацепления можно понимать с помощью произведений Масси[en]: произведение Масси — это n-членное произведение, которое определено только если все (n − 1)-членные произведения обращаются в нуль. Это соответствует свойству бруннова зацепления, в котором все наборы из (n − 1) компонент не сцеплены, но все n компонент вместе образуют нетривиальное зацепление.

Брунновы косы

Обычная коса является брунновой — при удалении чёрной нити синяя оказывается над красной так, что они оказываются расцеплёнными. То же самое происходит при удалении других нитей.

Бруннова коса — это коса, которая становится тривиальной при удалении любой из её нитей. Брунновы косы образуют подгруппу в группе кос. Брунновы косы на сфере, не являющиеся брунновыми на (плоском) круге, дают нетривиальные элементы в группах гомотопий сферы. Например, «стандартная» коса, соответствующая кольцам Борромео, даёт расслоение Хопфа S3 → S2, и продолжение такого плетения также даёт бруннову косу.

Примеры из реального мира

Многие головоломки на распутывание и некоторые механические головоломки являются вариантами брунновых зацеплений, и их целью является освобождение какого-либо элемента, частично связанного с остальной частью головоломки.

Брунновы цепочки используются для создания декоративных украшений из резиновых колец с помощью устройств типа Wonder Loom[en] (или её варианта Rainbow Loom).

Примечания

  1. Dror Bar-Natan (2010-08-16). «All Brunnians, Maybe Архивная копия от 7 марта 2021 на Wayback Machine», [Academic Pensieve].
  2. Milnor, 1954.

Литература

  • A. J. Berrick, Frederick R. Cohen, Yan Loi Wong, Jie Wu. Configurations, braids, and homotopy groups // Journal of the American Mathematical Society. — 2006. — Т. 19, вып. 2. — С. 265–326. — doi:10.1090/S0894-0347-05-00507-2..
  • Hermann Brunn, «Über Verkettung», J. Münch. Ber, XXII. 77-99 (1892). JFM 24.0507.01  (нем.)
  • John Milnor. Link Groups // Annals of Mathematics. — Annals of Mathematics, 1954. — Т. 59, вып. 2 (March). — С. 177–195. — doi:10.2307/1969685. — JSTOR 1969685.
  • Dale Rolfsen (1976). Knots and Links. Berkeley: Publish or Perish, Inc. ISBN 0-914098-16-0.

Ссылки

Эта страница в последний раз была отредактирована 11 июня 2022 в 20:16.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).