Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Бесконечное произведение

Из Википедии — свободной энциклопедии

В математике для последовательности чисел бесконечное произведение [1]

определяется как предел частичных произведений при . Произведение называется сходящимся, когда предел существует и не равен нулю. Иначе произведение называется расходящимся. Случай, в котором предел равен нулю, рассматривается отдельно, для получения результатов, аналогичных результатам для бесконечных сумм.

Если все числа положительны, то можно применить операцию логарифмирования. Тогда исследование сходимости бесконечного произведения сводится к исследованию сходимости числового ряда.

Cходимость

Если произведение сходится, тогда необходимо выполняется предельное равенство . Следовательно, логарифм определён для всех , за исключением конечного числа значений, присутствие которых не влияет на сходимость. Исключая из последовательности это конечное число членов, получим равенство:

в котором сходимость бесконечной суммы в правой части равносильна сходимости бесконечного произведения в левой. Это позволяет переформулировать критерий сходимости бесконечных сумм в критерий сходимости бесконечных произведений. Для произведений, таких, что для любого , обозначим , тогда и , откуда следует неравенство:

которое показывает, что бесконечное произведение сходится тогда и только тогда, когда сходится бесконечная сумма .

Примеры

Известные примеры бесконечных произведений, формулы для числа , открытые соответственно Франсуа Виетом и Джоном Валлисом:

;
.

Тождество Эйлера для дзета-функции

,

где произведение берётся по всем простым числам . Это произведение сходится при .

Представление функции в виде бесконечного произведения

В комплексном анализе известно, что синус и косинус могут быть разложены в бесконечное произведение многочленов

Эти разложения являются следствием общей теоремы о том, что любая целая функция , имеющая не более чем счётное количество нулей , где точка 0 — нуль порядка , может быть представлена в виде бесконечного произведения вида

,

где  — некоторая целая функция, а неотрицательные целые числа подобраны таким образом, чтобы ряд сходился. При соответственная множителю номер экспонента опускается (считается равной ).

Примечания

  1. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — М.: Наука, 1970. — Т. 2. — С. 350—364.

Ссылки

Эта страница в последний раз была отредактирована 20 марта 2024 в 05:22.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).