Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Аминоацил-тРНК-синтетаза

Из Википедии — свободной энциклопедии

Антикодон-связывающий домен
лейцил-тРНК-синтетаза из Thermus thermophilus

лейцил-тРНК-синтетаза из Thermus thermophilus
Идентификаторы
Символ Anticodon_1
Pfam PF08264
InterPro IPR013155
SCOP 1ivs
SUPERFAMILY 1ivs
Доступные структуры белков
Pfam структуры
PDB RCSB PDB; PDBe; PDBj
PDBsum 3D-модель
Логотип Викисклада Медиафайлы на Викискладе
Механизм реакции. Аминоацилирование тРНК аминоацил-тРНК-синтетазами
DALR антикодон-связывающий домен 1
аргинил-тРНК-синтетаза из Thermus thermophilus

аргинил-тРНК-синтетаза из Thermus thermophilus
Идентификаторы
Символ DALR_1
Pfam PF05746
Pfam clan CL0258
InterPro IPR008909
SCOP 1bs2
SUPERFAMILY 1bs2
Доступные структуры белков
Pfam структуры
PDB RCSB PDB; PDBe; PDBj
PDBsum 3D-модель
Логотип Викисклада Медиафайлы на Викискладе
DALR антикодон-связывающий домен 2
Структуры цистеинил-тРНК-синтетазы в комплексе с тРНКCys

Структуры цистеинил-тРНК-синтетазы в комплексе с тРНКCys
Идентификаторы
Символ DALR_2
Pfam PF09190
Pfam clan CL0258
InterPro IPR015273
Доступные структуры белков
Pfam структуры
PDB RCSB PDB; PDBe; PDBj
PDBsum 3D-модель
Логотип Викисклада Медиафайлы на Викискладе

Аминоацил-тРНК-синтетаза (АРСаза, кодаза) — фермент (синтетаза), катализирующий образование аминоацил-тРНК в реакции этерификации определённой аминокислоты с соответствующей ей молекулой тРНК. Для каждой протеиногенной аминокислоты существует по меньшей мере одна аминоацил-тРНК-синтетаза.

АРСазы обеспечивают соответствие нуклеотидным триплетам генетического кода (антикодону тРНК) встраиваемых в белок аминокислот и, таким образом, обеспечивают правильность происходящего в дальнейшем считывания генетической информации с мРНК при синтезе белков на рибосомах.

Аминоацилирование

  1. аминокислота + АТФ → аминоацил-АМФ + PPi — АТФ активирует аминокислоту
  2. аминоацил-AМФ + тРНК → аминоацил-тРНК + АМФ — активированная аминокислота соединяется с соответствующей тРНК

Суммарное уравнение двух реакций:
аминокислота + тРНК + АТФ → аминоацил-тРНК + АМФ + PPi

Механизм аминоацилирования

Сначала в активном центре синтетазы связываются соответствующая аминокислота и АТФ. Из трёх фосфатных групп АТФ две отщепляются, образуя молекулу пирофосфата (PPi), а на их место становится аминокислота. Образованное соединение (аминоацил-аденилат) состоит из ковалентно связанных высокоэнергетической связью аминокислотного остатка и АМФ. Энергии, содержащейся в этой связи, хватает на все дальнейшие этапы, необходимые для того, чтобы аминокислотный остаток занял своё место в полипептидной цепи (то есть в белке). Аминоацил-аденилаты нестабильны и легко гидролизуются, если диссоциируют из активного центра синтетазы. Когда аминоацил-аденилат сформирован, с активным центром синтетазы связывается 3′-конец тРНК, антикодон которой соответствует активируемой этой синтетазой аминокислоте. Происходит перенос аминокислотного остатка с аминоацил-аденилата на 2′- либо 3′-ОН группу рибозы, входящей в состав последнего на 3′-конце аденина тРНК. Таким образом синтезируется аминоацил-тРНК, то есть тРНК, несущая ковалентно присоединённый аминокислотный остаток. От аминоацил-аденилата при этом остаётся только АМФ. И аминоацил-тРНК, и АМФ освобождаются активным центром.

Безошибочность узнавания аминокислот

Каждая из 20 аминоацил-тРНК синтетаз должна всегда прикреплять к тРНК только свою аминокислоту, узнавая только одну из 20 протеиногенных аминокислот и не связывая другие похожие молекулы, содержащиеся в цитоплазме клетки. Аминокислоты значительно меньше тРНК по размерам, неизмеримо проще по структуре, поэтому их узнавание является значительно большей проблемой, чем узнавание нужной тРНК. В действительности ошибки имеют место, но их уровень не превышает одной на 10 000 — 100 000 синтезированных аминоацил-тРНК[1].

Некоторые аминокислоты отличаются друг от друга очень слабо, например, лишь одной метильной группой (изолейцин и валин, аланин и глицин). Для таких случаев во многих аминоацил-тРНК синтетазах эволюционировали механизмы, избирательно расщепляющие ошибочно синтезированные продукты. Процесс их распознавания и гидролиза называют редактированием. Избирательное расщепление аминоацил-аденилата называют претрансферным редактированием, так как оно происходит до переноса аминокислотного остатка на тРНК, а расщепление готовой аминоацил-тРНК — посттрансферным редактированием. Претрансферное редактирование, как правило, происходит в том же активном центре, что и аминоацилирование. Посттрансферное редактирование требует попадания 3′-конца аминоацил-тРНК с прикреплённым к нему остатком аминокислоты во второй активный центр аминоацил-тРНК синтетазы — редактирующий. Этот второй активный центр есть не у всех аминоацил-тРНК синтетаз, а у тех, у которых есть, находится в отдельном домене глобулы фермента. Встречаются также свободно плавающие ферменты, участвующие в посттрансферном редактировании. После гидролиза разъединённые аминокислота и тРНК (или аминокислота и АМФ) высвобождаются в раствор[2].

Классификация

Все аминоацил-тРНК-синтетазы произошли от двух предковых форм и объединены на основе структурного сходства в два класса. Эти классы отличаются по доменной организации, структуре главного (аминоацилирующего) домена, способу связывания и аминоацилирования тРНК.[3]

Аминоацил-тРНК-синтетазы первого класса — ферменты, переносящие остаток аминокислоты на 2′-ОН группу рибозы; второго класса — ферменты, переносящие остаток аминокислоты на 3′-ОН группу концевой рибозы тРНК.

Аминоацилирующий домен аминоацил-тРНК-синтетаз 1-го класса образован так называемой укладкой Россмана, в основе которой лежит параллельный β-лист. Ферменты 1-го класса являются в большинстве случаев мономерами. 76-й аденозин тРНК они аминоацилируют по 2′-ОН группе.

Ферменты 2-го класса имеют в основе структуры аминоацилирующего домена антипараллельный β-лист. Как правило, они являются димерами, то есть имеют четвертичную структуру. За исключением фенилаланил-тРНК синтетазы, все они аминоацилируют 76-й аденозин тРНК по 3′-ОН группе.

Аминокислоты по классам аминоацил-тРНК-синтетаз:

Для аминокислоты лизин существуют аминоацил-тРНК-синтетазы обоих классов.

Каждый класс дополнительно делится на 3 подкласса — a, b и c по структурному сходству. Зачастую аминоацил-тРНК-синтетазы одной и той же специфичности (напр., пролил-тРНК синтетаза) существенно отличаются друг у друга у бактерий, архебактерий и эукариот. Тем не менее, ферменты одной специфичности почти всегда более сходны между собой, чем с ферментами других специфичностей. Исключение составляют две различные лизил-тРНК синтетазы, одна из которых относится к 1-му классу, а другая — ко 2-му.

Гены аминоацил-тРНК синтетаз
КФ Фермент Аминокислота Ген, Homo sapiens
6.1.1.1 тирозил-тРНК синтетаза тирозин YARS
6.1.1.2 триптофанил-тРНК синтетаза триптофан WARS
6.1.1.3 треонил-тРНК синтетаза треонин TARS
6.1.1.4 лейцил-тРНК синтетаза лейцин LARS
6.1.1.5 изолейцил-тРНК синтетаза изолейцин IARS
6.1.1.6 лизил-тРНК синтетаза лизин KARS
6.1.1.7 аланин-тРНК синтетаза аланин AARS
6.1.1.9 валил-тРНК синтетаза валин VARS
6.1.1.10 метионил-тРНК синтетаза метионин MARS
6.1.1.11 серил-тРНК синтетаза серин SARS
6.1.1.12 аспартил-тРНК синтетаза аспартат DARS
6.1.1.14 глицил-тРНК синтетаза глицин GARS
6.1.1.15 пролил-тРНК синтетаза, глутамил-пролил-тРНК синтетаза пролин PARS2, EPRS1
6.1.1.16 цистеил-тРНК синтетаза цистеин CARS
6.1.1.17 глутамил-тРНК синтетаза, глутамил-пролил-тРНК синтетаза глутамат EARS2, EPRS1
6.1.1.18 глутаминил-тРНК синтетаза глутамин QARS
6.1.1.19 аргинил-тРНК синтетаза аргинин RARS
6.1.1.20 фенилаланил-тРНК синтетаза фенилаланин FARSA, FARSB
6.1.1.21 гистидил-тРНК синтетаза гистидин HARS
6.1.1.22 аспарагинил-тРНК синтетаза аспарагин NARS
6.1.1.23 аспартил-тРНК-Asn синтетаза аспартат нет у человека
6.1.1.24 глутамил-тРНК-Gln синтетаза глутамат нет у человека
6.1.1.26 пирролизил-тРНК-Pyl синтетаза пирролизин нет у человека
6.1.1.27 O-фосфо-L-серил-тРНК синтетаза O-фосфо-L-серин нет у человека

Доменная организация

Каждая молекула аминоацил-тРНК синтетазы состоит из двух основных доменов — аминоацилирующего, в котором располагается активный центр и происходят реакции, и антикодон-связывающего, узнающего последовательность антикодона тРНК. Также часто встречаются редактирующие домены, служащие для гидролиза аминоацил-тРНК, несущих не тот аминокислотный остаток, и другие домены[4].

Эволюция

В добелковой жизни (РНК-мире) функцию аминоацил-тРНК синтетаз выполняли, по всей видимости, рибозимы, то есть молекулы РНК, обладающие каталитическими свойствами. В настоящее время такие молекулы воссозданы в лаборатории методом «эволюции в пробирке»[5]. После становления основных элементов аппарата белкового синтеза функция аминоацилирования тРНК перешла к белковым молекулам, восходящим к двум предковым последовательностям. Первоначально эти ферменты состояли только из одного, аминоацилирующего, домена. По мере становления генетического кода росло разнообразие аминоацил-тРНК синтетаз и повышались требования к их специфичности. Это и привело к включению в их структуру дополнительных доменов. Первичная последовательность аминоацил-тРНК синтетаз за время их эволюции дивергировала очень существенно, что, впрочем, не помешало обнаружить в пределах каждого из классов гомологию как первичной последовательности, так и третичной (пространственной) структуры[4].

Технологические перспективы

Мутантные аминоацил-тРНК синтетазы и тРНК используются для включения в белки аминокислот, не предусмотренных генетическим кодом[6].

Примечания

  1. The frequency of errors in protein biosynthesis. Дата обращения: 11 августа 2010.
  2. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Дата обращения: 11 августа 2010.
  3. 6289/pdf/347203a0.pdf Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Дата обращения: 11 августа 2010.
  4. 1 2 On the evolution of structure in aminoacyl-tRNA synthetases. Дата обращения: 3 ноября 2011. Архивировано 5 апреля 2012 года.
  5. Ribozyme-catalyzed tRNA aminoacylation. Дата обращения: 11 августа 2010. Архивировано 5 апреля 2012 года.
  6. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Дата обращения: 11 августа 2010. Архивировано 5 апреля 2012 года.

См. также

Пермеазы

Эта страница в последний раз была отредактирована 24 ноября 2023 в 20:58.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).