Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Алгебра над полем — это векторное пространство, снабжённое билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.

Алгебра называется ассоциативной, если операция умножения в ней ассоциативна; соответственно, алгебра с единицей — алгебра, в которой существует нейтральный относительно умножения элемент. В некоторых учебниках под словом «алгебра» подразумевается «ассоциативная алгебра», однако неассоциативные алгебры также представляют определённую важность.

Определение

Пусть  — векторное пространство над полем , снабжённое операцией , называемой умножением. Тогда является алгеброй над , если для любых выполняются следующие свойства:

  • .

Эти три свойства можно выразить одним словом, сказав, что операция умножения является билинейной. В случае алгебр с единицей часто дают следующее эквивалентное определение:

Алгебра с единицей над полем  — это кольцо с единицей , снабжённое гомоморфизмом колец с единицей , таким, что принадлежит центру кольца (то есть множеству элементов, коммутирующих по умножению со всеми остальными элементами). После этого можно считать, что является векторным пространством над со следующей операцией умножения на скаляр : .

Связанные определения

  • Гомоморфизм -алгебр — это -линейное отображение, такое что для любых из области определения.
  • Подалгебра алгебры над полем  — это линейное подпространство, такое что произведение любых двух элементов из этого подпространства снова ему принадлежит. Другими словами, подалгеброй линейной алгебры над полем называется её подмножество если оно является подкольцом кольца и подпространством линейного пространства [1].
    • Элемент алгебры называется алгебраическим, если он содержится в конечномерной подалгебре.
    • Алгебра называется алгебраической, если все её элементы алгебраические.[2]
  • Левый идеал -алгебры — это линейное подпространство, замкнутое относительно умножения слева на произвольный элемент кольца. Соответственно, правый идеал замкнут относительно правого умножения; двусторонний идеал — идеал, являющийся левым и правым. Единственное отличие этого определения от определения идеала кольца — это требование замкнутости относительно умножения на элементы поля, в случае алгебр с единицей это требование выполняется автоматически.
  • Алгебра с делением — это алгебра над полем, такая что для любых её элементов и уравнения и разрешимы[3]. В частности, ассоциативная алгебра с делением, имеющая единицу, является телом.
  • Центр алгебры  — это множество элементов , таких что для любого элемента .

Примеры

Ассоциативные алгебры

Неассоциативные алгебры

Структурные коэффициенты

Умножение в алгебре над полем однозначно задаётся произведениями базисных векторов. Таким образом, для задания алгебры над полем достаточно указать её размерность и структурных коэффициентов , являющихся элементами поля. Эти коэффициенты определяются следующим образом:

где  — некоторый базис . Различные множества структурных коэффициентов могут соответствовать изоморфным алгебрам.

Если  — только коммутативное кольцо, а не поле, это описание возможно, только когда алгебра является свободным модулем.

См. также

Примечания

  1. Скорняков Л. А. Элементы алгебры. - М., Наука, 1986. - с. 190
  2. Джекобсон Н. Строение колец. — М.: ИЛ, 1961. — 392 с.
  3. Кузьмин Е. Н. Алгебра с делением Архивная копия от 14 июля 2015 на Wayback Machine

Литература

  • Скорняков Л. А., Шестаков И. П. . Глава III. Кольца и модули // Общая алгебра / Под общ. ред. Л. А. Скорнякова. — М.: Наука, 1990. — Т. 1. — С. 291—572. — 592 с. — (Справочная математическая библиотека). — 30 000 экз. — ISBN 5-02-014426-6.
Эта страница в последний раз была отредактирована 12 апреля 2023 в 15:46.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).