Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Альтернативы
Недавние
Show all languages
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Алгебра Жегалкина — множество булевых функций, на котором определены нульарная операция взятия единицы , бинарная операция конъюнкции и бинарная операция суммы по модулю два . Константа ноль вводится как . Операция отрицания вводится соотношением . Операция дизъюнкции следует из тождества [1].

При помощи алгебры Жегалкина всякую совершенную дизъюнктивную нормальную форму можно единственным образом преобразовать в полином Жегалкина (теорема Жегалкина).

Основные тождества

  • ,
  • ,

Таким образом, базис булевых функций является функционально-полным логическим базисом.

Также функционально полным является и его инверсный логический базис , где - инверсия операции XOR. Для этого базиса тождества также инверсные:  — вывод константной единицы,  — вывод операции отрицания, - операция конъюнкции.

Функциональная полнота этих двух базисов следует из полноты базиса .

См. также

Примечания

  1. Капитонова Ю. В., Кривой С. Л., Летичевский А. А. Лекции по дискретной математике. — СПб., БХВ-Петербург, 2004. — isbn 5-94157-546-7, с 110-111
Эта страница в последний раз была отредактирована 8 марта 2020 в 11:12.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).