Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Абсорбционная холодильная машина

Из Википедии — свободной энциклопедии

Абсорбционная холодильная машина на 14МВт

Абсорбционная холодильная машинахолодильная установка испарительного типа, в которой удаление паров хладагента из испарителя производится за счёт абсорбции хладагента в абсорбенте. Разделение хладагента и абсорбента как правило производится с помощью дистилляции или ректификации. Абсорбционный принцип работы позволяет обходиться без компрессора, а в небольших холодильниках — и вовсе без движущихся частей, обеспечивая циркуляцию веществ за счёт тепловых эффектов. Абсорбционные холодильники имеют более низкий холодильный коэффициент и более низкую холодопроизводительность, по сравнению с парокомпрессиоными, однако позволяют производить холод за счёт прямого сжигания топлива или другого источника тепла необходимой температуры.

Наибольшее распространение получили холодильные машины, использующие в качестве хладагента — аммиак, а абсорбента — воду. В климатических и водоохладительных установках, если не требуется получение температур ниже 0°C, в качестве хладагента может использоваться вода, а абсорбента — крепкий раствор бромида лития.

История создания АБХМ

  • Первое документированное использование искусственного охлаждения в 1756 году было осуществлено английским учёным Вильямом Калленом[1]
  • Способность концентрированной серной кислоты поглощать (абсорбировать) водяной пар впервые была замечена Геральдом Найрне в 1777 году.
  • В 1810 году Джоном Лесли создана первая искусственная ледоделка на основе поглощения сернистого газа водой.
  • В 1834 году английским врачом Джейкобом Перкинсом (Jacob Perkins (англ.)) (1766—1844) была построена холодильная машина с использованием насоса (компрессора) на диэтиловом эфире.
  • Французским учёным Фердинандом Карре (1824—1900) и его братом Эдмондом Карре (Edmond Carre) в 1846 году была изобретена аммиачная абсорбционная холодильная машина. Несмотря на то, что это изобретение быстро продемонстрировало свою полезность, его не использовели несколько следующих десятилетий.
  • В 1871 году была построена машина, работающая на метиловом эфире.
  • В 1850 году Эдмонд Карре создал абсорбционную машину на воде и концентрированной серной кислоте.
  • В 1922 году шведские студенты Карл Мунтерс и Бальцар фон Платен изобрели первый в мире абсорбционный холодильник, который работал на газе, керосине или электричестве, и был запатентован в 1923 году.
  • В 1923 году австралийцем Эдвардом Халлстромом изобретён оригинальный аммиачный абсорбционный холодильник упрощённой конструкции — Icy Ball (англ. ледяной шар).
  • В 1926 году физики Альберт Эйнштейн и Лео Силард изобретают так называемый холодильник Эйнштейна, который был запатентован в США 11 ноября 1930 года[2].
  • В начале XX века в Москве была открыта фирма, которая предлагала всем желающим агрегат под названием «Эскимо». Данный агрегат был изготовлен по принципу, предложенному Фердинадом Карре. При своих больших габаритах, агрегат не издавал громкого шума и был универсальным. Для работы необходимы были уголь, дрова, керосин или спирт. Один цикл работы «Эскимо» позволял получить 12 кг льда.
  • Применение абсорбции в промышленном кондиционировании началось в конце 1950-х годов.
  • В 1985 году была разработана и запатентована более эффективная АБХМ — трёхступенчатая абсорбционная холодильная машина с тремя конденсаторами и тремя генераторами.
  • В 1993 году был запатентован альтернативный цикл трёхступенчатой абсорбционной холодильной машины с двойным конденсатором[3].

Типы абсорбционных охладителей

По типу цикла охлаждения выделяют машины периодического и непрерывного действия. Существуют холодильные машины с использованием различных пар веществ, но наибольшее распространение получили аммиачно-водные и водно-бромлитиевые холодильные машины. Существуют холодильные машины закрытого и открытого типа — последние как правило применяются при использовании в качестве хладагента воды.

Абсорбционная холодильная машина периодического действия

Абсорбционный холодильный агрегат периодического действия — самый простой вид абсорбционных холодильников. В простейшем случае состоит из пары резервуаров, «горячего» и «холодного», соединённых трубкой. «Горячий» резервуар совмещает в себе функции абсорбера и кипятильника, а «холодный» — конденсатора и испарителя. При заправке такого холодильника «горячий» резервуар заполняется раствором хладагента с абсорбентом (как правило аммиака в воде). Перед началом работы необходимо разделить два этих вещества путём кипячения раствора в первом резервуаре и охлаждения второго. За счёт разности температур кипения в охлаждаемый резервуар попадает в основном хладагент, а абсорбент остаётся в «горячем». После приведения агрегата в действие, хладагент в «холодном» резервуаре испаряется, забирая тепло, и переходит по трубке во второй, где поглощается абсорбентом[4]. Вместо воды в качестве абсорбента может использоваться твёрдый поглотитель, например хлорид кальция. Функции испарителя и конденсатора также могут быть разделены[5].

Недостаток такого холодильного агрегата: он не может обеспечивать непрерывное производство холода. Кроме того, подобные холодильники имеют очень низкий холодильный коэффициент, т.к. с одной стороны тепло, необходимое для нагрева раствора до температуры кипения, после заправки рассеивается в окружающую среду, а с другой при работе часть произведённого холода уносится хладагентом в абсорбер. Такие устройства применялись в первой половине XX века в качестве переносных источников холода для разносной торговли и кемпинга.

Абсорбционная машина непрерывного действия закрытого типа

упрощённая схема абсорбционного холодильника, работающего на газу

В абсорбционной машине непрерывного действия (см. рисунок) происходит постоянная циркуляция хладагента и абсорбента. Так же, как и в машине периодического действия, хладагент и абсорбент разделяются дистилляцией, для чего раствор нагревается в кипятильнике (2), затем хладагент конденсируется в конденсаторе (4), а освобождённый от хладагента абсорбент подаётся в абсорбер (7). Жидкий хладагент поступает в испаритель (6), где испаряется, а затем пары хладагента удаляются из испарителя благодаря разрежению, создаваемого абсорбером[6].

Для облегчения циркуляции в систему может быть добавлен буферный газ, как правило — водород. За счёт буферного газа давление в системе постоянно, испарение происходит за счёт изменения парциального давления, что позволяет упростить циркуляцию хладагента. Такая система позволяет обходиться без движущихся частей, обеспечивая циркуляцию абсорбента с помощью термосифона — трубки, внутри которой жидкость поднимается вверх за счёт кипения[6]. Такая система применяется в бытовых абсорбционных холодильниках, устанавливаемых в автодомах. В промышленных холодильниках могут применяться многоступенчатые холодильные машины, позволяющие утилизировать низкопотенциальное тепло, либо получать более низкие температуры.

Водная — Бромид-Литиевая абсорбционная холодильная машина. Принцип действия.

На представленной схеме Бромид-Литиевой абсорбционной холодильной машины для охлаждения воды охладитель состоит из двух камер.

  • Верхняя — генератор (AT). Это горячая камера с относительно высоким давлением.
  • Нижняя — испаритель (VD) и абсорбер (AB). Это холодная камера с очень низким давлением (2мБар).

Под действием тепла (HM) в генераторе из раствора бромида лития выделяются пары воды (хладагента), которые переносятся в конденсатор. Водяной пар конденсируется, отдавая тепло воде охлаждающего контура KüW. Охлаждённая вода по линии 5 поступает в испаритель, где при низком давлении закипает при температуре +6 °C и забирает тепло от охлаждаемого контура чиллер-фанкойл (KW). Насос VD прокачивает воду на форсунки, что способствует более интенсивному теплообмену. В других типах АБХМ охлаждаемый контур не обрызгивается, а погружается в ванну хладагента.

Оставшийся концентрированный раствор бромида лития по линии 1-2 через растворный теплообменник/гидравлический затвор WT1 переходит в абсорбер. Для улучшения абсорбции раствор разбрызгивается форсунками и поглощает водяной пар из испарителя. Процесс абсорбции связан с выделением теплоты, которая отводится охлаждающим контуром KüW в абсорбере АВ. Полученный раствор воды и бромида лития перекачивается по линии 3-4 в генератор через регулятор/теплообменник WT1, и цикл повторяется снова.

Абсорбционная машина открытого типа

Абсорбционный кондиционер открытого цикла

Абсорбционные машины открытого типа применяются для кондиционирования воздуха. Хладагентом в таких машинах как правило является вода, что не позволяет получать температуры ниже 0°C. В качестве абсорбента может использоваться бромид лития. Такие кондиционеры позволяют также регулировать влажность воздуха.

Преимущества

По сравнению с компрессионными холодильниками, АБХМ обладают следующими преимуществами:

  • Минимальное потребление электроэнергии. Электроэнергия требуется для работы насосов и автоматики.
  • Минимальный уровень шума.
  • Экологически безопасны. Хладагентом является бромид лития, вода выполняет функцию промежуточного теплоносителя.
  • Утилизируют тепловую энергию сбрасываемой горячей воды, дымовых газов или производственных процессов.
  • Длительный срок службы (не менее 20 лет).
  • Полная автоматизация.
  • Пожаро- и взрывобезопасность.
  • Абсорбционные машины не подведомственны Ростехнадзору.

Недостатки

Абсорбционные охладители, по сравнению с компрессионными охладителями отличает:

  • Более высокая цена оборудования, примерно в 2 раза выше (на мощности ниже 500 кВт)? чем цена обычного охладителя. При больших мощностях (2 МВт и выше) стоимость АБХМ приближается к стоимости ПКХМ.
  • Необходимость наличия дешёвого (бесплатного) источника тепловой энергии с достаточно высокой температурой.
  • Относительно низкая энергетическая эффективность — тепловой коэффициент (отношение подведённой тепловой энергий к полученному холоду), равный 0,65-0,8 — для одноступенчатых машин, и 1—1,52 — для двухступенчатых машин.
  • Существенно больший вес, чем у обычного охладителя.
  • Необходимость использовать открытые охладители — градирни, что увеличивает водопотребление системы.

Бытовые АБХМ

Выше приведены достоинства и недостатки промышленных агрегатов. При этом, отдельно стоит отметить особенности бытовых холодильников. Потребление энергии и эффективность бытовых АБХМ никак не соотносятся с этими параметрами для промышленных машин. Крупные установки обычно используют имеющееся бросовое тепло, оно не учитывается в расчёте их КПД. Бытовой холодильник может работать только при постоянном расходовании теплогенерирующего ресурса. Такой холодильник в несколько раз хуже компрессорного по полному КПД. Но он может работать в том числе и от пропана, значительно более дешёвого ресурса по сравнению с электроэнергией. Что отчасти нивелирует плохой КПД, и наряду с тем, что теплоэнергоёмкость баллона с пропаном гораздо выше электроаккумулятора той же массы, определяет одну из двух основных областей их применения, это автодома и другие передвижные объекты. Другая особенность это дешевизна, простота изготовления и массовость из-за отсутствия цветного металла, определяет вторую нишу, это общежития и др. объекты с временным пребыванием, где нетребователен объём холодильной камеры и не требуется сильная заморозка. Отметим также, что плохой КПД приводит к существенному нагреву помещения, что хорошо лишь зимой. В ряде случаев (автодома) агрегат нередко устроен так, что отработанное тепло выводится на улицу. Также из недостатков известно плохое охлаждение летом, из-за стремительного падения КПД при повышении температуры окружающей среды (а иногда ставят и принудительную вентиляцию радиаторов). Из достоинств, при работе от электричества, можно назвать практическое отсутствие требований к качеству электропитания, так как потребителем является только керамический электронагреватель. Потребляемая мощность 70...90 Вт (как правило, непрерывно) у обычных малогабаритных моделей. Для сравнения, компрессорный мини-БХП потребляет 35...50 Вт со скважностью порядка 50%. Также достоинство это значительный срок службы. Но ремонт, кроме замены электронагревателя, обычно невозможен.

См. также

Примечания

  1. Уильям Каллен, «О производстве холода, произведённого при испарении жидкостей и некоторые другие способы получения холода», в «Essays and Observations Physical and Literary Read Before a Society in Edinburgh and Published by Them, II», (Эдинбург, 1756) (en)
  2. Design Analysis of the Einstein Refrigeration Cycle (англ.). Дата обращения: 23 ноября 2011. Архивировано из оригинала 16 ноября 2011 года.
  3. Подробное описание двух и трёхступенчатых АБХМ Архивная копия от 17 ноября 2011 на Wayback Machine на сайте Ассоциации инженеров АВОК
  4. Розенфельд, 1955, с. 527−528.
  5. Кондрашова, 1973, с. 211.
  6. 1 2 Кондрашова, 1973, с. 212—213.

Литература

  • Холодильные машины: Учебник для студентов втузов специальности «Техника и физика низких температур»/А. В. Бараненко, Н. Н. Бухарин, В. И. Пекарев, Л. С. Тимофеевский: Под общ. ред. Л. С. Тимофеевского.- СПб.: Политехника, 1997 г.- 992с.
  • Кондрашова Н.Г., Лашутина Н.Г. Холодильно-компрессорные машины и установки.. — М.: Высшая школа, 1973.
  • Л.М. Розенфельд. Холодильные машины и аппараты. — М.: Государственное издательство торговой литературы, 1955.

Ссылки

Эта страница в последний раз была отредактирована 28 августа 2023 в 08:52.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).