Для установки нажмите кнопочку Установить расширение. И это всё.

Исходный код расширения WIKI 2 регулярно проверяется специалистами Mozilla Foundation, Google и Apple. Вы также можете это сделать в любой момент.

4,5
Келли Слэйтон
Мои поздравления с отличным проектом... что за великолепная идея!
Александр Григорьевский
Я использую WIKI 2 каждый день
и почти забыл как выглядит оригинальная Википедия.
Статистика
На русском, статей
Улучшено за 24 ч.
Добавлено за 24 ч.
Что мы делаем. Каждая страница проходит через несколько сотен совершенствующих техник. Совершенно та же Википедия. Только лучше.
.
Лео
Ньютон
Яркие
Мягкие

Из Википедии — свободной энциклопедии

Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов из малой категории в абелеву также являются абелевыми.

Определение

Предаддитивная категория является абелевой, если:

Это определение эквивалентно[1] следующему определению «по частям»: предаддитивная категория абелева, если она аддитивна, в ней существуют все ядра и коядра и все мономорфизмы и эпиморфизмы нормальны.

Важно, что наличие структуры абелевых групп на множествах морфизмов является следствием четырёх свойств из первого определения. Это подчёркивает фундаментальную роль категории абелевых групп в данной теории.

Примеры

Аксиомы Гротендика

В статье Sur quelques points d’algèbre homologique[2] Гротендик предложил несколько дополнительных аксиом, которые могут выполняться в абелевой категории .

  • AB3) Для любого множества объектов категории существует копроизведение . Данная аксиома эквивалентна кополноте абелевой категории [3].
  • AB4) удовлетворяет аксиоме AB3) и копроизведение любого семейства мономорфизмов является мономорфизмом (то есть копроизведение является точным функтором).
  • AB5) удовлетворяет аксиоме AB3) и фильтрованные копределы[en] точных последовательностей точны. Эквивалентно, для любой решётки подобъектов объекта и любого — подобъекта объекта верно, что

Аксиомы AB3*), AB4*) и AB5*) получаются из приведённых выше аксиом как двойственные им (то есть заменой копределов на пределы). Аксиомы AB1) и AB2) - стандартные аксиомы, которые выполняются в любой абелевой категории (более точно, абелева категория определяется как аддитивная категория, удовлетворяющая этим аксиомам):

  • AB1) У любого морфизма существует ядро и коядро.
  • AB2) Для любого морфизма канонический морфизм из в является изоморфизмом. (Здесь ).

Гротендик также формулирует более сильные аксиомы AB6) и AB6*), однако не использует их в этой работе.

История

Понятие абелевой категории было предложено Буксбаумом[en] в 1955 году (он использовал название «точная категория») и Гротендиком в 1957 году. В то время существовала теория когомологий пучков на алгебраических многообразиях и теория когомологий групп. Эти теории определялись различно, но имели сходные свойства. Гротендику удалось объединить эти теории; обе они могут быть определены при помощи производных функторов на абелевой категории пучков и абелевой категории модулей соответственно.

Примечания

Литература

Эта страница в последний раз была отредактирована 1 октября 2021 в 14:50.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License. Нетекстовые медиаданные доступны под собственными лицензиями. Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. WIKI 2 является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).