To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Variable (matemáticas)

De Wikipedia, la enciclopedia libre

En matemáticas y en lógica, una variable es un símbolo constituyente de un predicado, fórmula, algoritmo o de una proposición. El término «variable» se utiliza aun fuera del ámbito matemático para designar una cantidad susceptible de tomar distintos valores numéricos dentro de un conjunto de números especificado.[1]

Por el contrario, una constante es un valor que no cambia (aunque puede no ser conocido, o indeterminado). En este contexto, debe diferenciarse de una constante matemática, que es una magnitud numérica específica, independientemente de la naturaleza del problema dado.

Formalización

Desarrollo histórico

La noción intuitiva de «variable» o «valor indefinido», se confunde con la de «incógnita» o «indeterminada»,[2]​ en un sentido enteramente algebraico; su origen y desarrollo se sitúa en los trabajos de Arithmetica de Diofanto y al-Kitāb al-mukhtaṣar fī ḥisāb al-ŷabr wa-l-muqābala de Al-Juarismi. La rama de las matemáticas que profundiza el estudio de la solución de ecuaciones, dentro del álgebra abstracta es la teoría de ecuaciones.

La «variable moderna», dentro del ámbito matemático, es un término que fue acuñado por Gottfried Leibniz (finales del s. XVII), en relación con sus trabajos en cálculo diferencial. La notación « f(x)» fue introducida por Leonhard Euler en su obra Commentarii de San petersburgo en 1736.[3]

Variables independientes y variables dependientes

En cálculo, álgebra y geometría analítica, suele hacerse la distinción entre variables independientes y variables dependientes. En una expresión matemática, por ejemplo una función , el símbolo "x" representa a la variable independiente, y el símbolo "y" representa a la variable dependiente. Se define variable independiente como un símbolo "x" que toma diversos valores numéricos (argumentos), dentro de un conjunto de números específicos y que modifica el resultado o valor de la variable dependiente.

Polinomios y ecuaciones

En una igualdad del tipo f(x)=g(x), la incógnita x es una variable matemática y f(x) y g(x) son funciones matemáticas, en el sentido que asocian a un valor, por ejemplo 1, los números notados f(1) y g(1).

Si se consideran los polinomios como funciones, es posible escribir toda ecuación bajo esa forma,[4]​ a condición de que la incógnita x pertenezca a un conjunto arbitrario (números, vectores, funciones, etc) y las funciones f y g estén bien definidas, de manera general.

Convenciones

En notación matemática existen numerosos símbolos utilizados convencionalmente para representar las variables más conocidas y utilizadas. A continuación se presentan los más comunes; muchos de ellos poseen otros usos aceptados, y pueden de hecho representar una constante o una función específica.

  • ai para denotar el término de una sucesión.
  • a, b, c y d (a veces extendido a e y f) denotan generalmente constantes matemáticas.
    • Los coeficientes en una ecuación, por ejemplo la expresión general de un polinomio o una ecuación diofántica también suelen escribirse a, b, c, d, e y f.
  • f y g (también h) denotan comúnmente funciones.
  • i, j, y k (también l y h) se utilizan para sub-indexar.
  • l y w suelen utilizarse para designar el largo y ancho de una figura geométrica.
  • m y n suelen denotar números enteros y suelen utilizarse para designar nociones similares en un contexto matemático, como un par de rectas paralelas.
    • n comúnmente denota una cuenta de objetos, o en estadística, el número de observaciones.
  • p, q, y r suelen desempeñar roles paralelos en un contexto matemático.

Referencias

  1. Diccionario María Moliner, variable.
  2. Weisstein, Eric W. «Indeterminada». En Weisstein, Eric W, ed. MathWorld (en inglés). Wolfram Research. 
  3. Dunham, William (1999). Euler: The Master of Us All. The Mathematical Association of America. pp. 17. 
  4. Encyclopædia Universalis, artículo Équation, mathématique

Bibliografía

Esta página se editó por última vez el 21 jun 2021 a las 15:51.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.