To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Teorema de los ceros de Hilbert

De Wikipedia, la enciclopedia libre

El Hilberts Nullstellensatz (en alemán: "teorema de los lugares de los ceros") es un teorema en Geometría algebraica que relaciona variedades e ideales en anillos de polinomios sobre cuerpos algebraicamente cerrados. Fue probado inicialmente por David Hilbert.

Sea un cuerpo algebraicamente cerrado (como el de los números complejos), considera el anillo de polinomios y sea un ideal en este anillo. La variedad afín definida por este ideal consiste de todas las n-tuplas en tal que para todo en . El teorema de los ceros de Hilbert nos dice que si es un polinomio en que se anula en la variedad ,  i.e. para todo x en , entonces existe un número natural r tal que pr está en I.

Un corolario inmediato es la "Nullstellensatz débil": si I es un ideal propio en K[X1,X2,... , Xn], entonces V(I) no puede ser vacío, i.e. existe un cero común para todos los polinomios del ideal. Esta es la razón para el nombre del teorema; que es fácilmente demostrable en esta forma "débil". Notar que el asumir que K sea algebraicamente cerrado es esencial aquí: el ideal propio (X² + 1) en R[X] no tiene un cero común.

Con la notación común de la geometría algebraica, el Nullstellensatz puede ser también formulado como

I(V(J)) =    para todo ideal J

Aquí, denota el radical de J e I(U) denota el ideal de todos los polinomios que se anulan en el conjunto U. De este modo, obtenemos una correspondencia biyectiva que revierte el orden entre las variedades afines en Kn y los ideales radicales de K[X1,X2,... , Xn].

Esta página se editó por última vez el 18 sep 2019 a las 10:49.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.