To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Teorema de Gelfand-Naimark

De Wikipedia, la enciclopedia libre

En matemáticas, el teorema de Gelfand-Naimark establece que una C*-álgebra A arbitraria es isométricamente *-isomorfa a una C*-subálgebra de operadores acotados en un espacio de Hilbert. Este resultado fue probado por Israel Gelfand y Mark Naimark en 1943 y fue un punto significativo en el desarrollo de la teoría de las álgebras C* ya que estableció la posibilidad de considerar un álgebra C* como una entidad algebraica abstracta sin referencia a realizaciones particulares. como álgebra de operadores.

Detalles

La representación de Gelfand-Naimark π es la suma directa de representaciones π f de A donde f abarca el conjunto de estados puros de A y π f es la representación irreducible asociada a f por la construcción GNS. Así, la representación de Gelfand-Naimark actúa sobre la suma directa de Hilbert de los espacios de Hilbert H f por

π( x ) es un operador lineal acotado ya que es la suma directa de una familia de operadores, cada uno de los cuales tiene norma ≤ || x ||.

Teorema. La representación de Gelfand-Naimark de un álgebra C* es una representación isométrica*.

Basta mostrar que el mapa π es inyectivo, ya que para *-morfismos de álgebras C* inyectivo implica isométrico. Sea x un elemento distinto de cero de A. Según el teorema de extensión de Kerin para funcionales lineales positivos, existe un estado f en A tal que f (z) ≥ 0 para todos los z no negativos en A y f ( − x * x) < 0. Considere la representación GNS π f con un vector cíclico ξ. Desde

se deduce que π f (x) ≠ 0, entonces π (x) ≠ 0, entonces π es inyectivo.

La construcción de la representación de Gelfand-Naimark depende únicamente de la construcción GNS y, por lo tanto, es significativa para cualquier álgebra A de Banach * que tenga una identidad aproximada. En general (cuando A no es un álgebra C*) no será una representación fiel. El cierre de la imagen de π( A ) será un álgebra C* de operadores llamada álgebra envolvente C* de A. De manera equivalente, podemos definir el álgebra envolvente C* de la siguiente manera: Definir una función con valor real en A mediante

como f abarca estados puros de A. Esta es una seminorma, a la que nos referimos como seminorma C* de A. El conjunto I de elementos de A cuya seminorma es 0 forma un ideal bilateral en A cerrado bajo involución. Por tanto, el espacio vectorial cociente A / I es un álgebra involutiva y la norma

factores a través de una norma en A / I, que, excepto por su integridad, es una norma C* en A / I (a veces se les llama normas pre-C*). Tomar la finalización de A / I en relación con esta norma anterior a C* produce un álgebra C* B.

Mediante el teorema de Krein-Milman se puede demostrar sin demasiada dificultad que para x un elemento del álgebra A de Banach * tiene una identidad aproximada:

De ello se deduce que una forma equivalente para la norma C* en A es tomar el supremo anterior sobre todos los estados.

La construcción universal también se utiliza para definir álgebras C* universales de isometrías.

Observación. La representación de Gelfand o isomorfismo de Gelfand para un álgebra C* conmutativa con unidad es un *-isomorfismo isométrico de al álgebra de funciones continuas de valores complejos en el espacio de funcionales lineales multiplicativos, que en el caso conmutativo son precisamente los estados puros, de A con la topología débil*.

Véase también

  • Construcción GNS
  • Teorema de factorización de Stinespring
  • Teorema de Gelfand-Raikov
  • Operador koopman
  • Dualidad Tannaka-Krein

Referencias

Esta página se editó por última vez el 14 abr 2024 a las 15:29.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.