To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Teoría de números algebraicos

De Wikipedia, la enciclopedia libre

La teoría de números algebraicos o teoría algebraica de números es una rama de la teoría de los números en la cual el concepto de número se expande a los números algebraicos, los cuales son las raíces de los polinomios con coeficientes racionales.

Un campo de números algebraico es una extensión finita (algebraica) del campo de los números racionales. El anillo de enteros de un campo de números algebraico es el conjunto de los enteros en dicho campo, es decir, el subconjunto del campo que consta de los elementos que son raíces de polinomios con coeficientes enteros.

Se puede ver, y tratar, a un campo de números algebraico como un análogo de los racionales, y a su anillo de enteros como un análogo de los enteros. Ahora bien, la analogía no es perfecta: algunas de las propiedades familiares de los racionales y los enteros no se conservan, por ejemplo, la factorización única. (La teoría de ideales suple en parte la falta de factorización única.)

Los campos de números algebraicos, así como los campos de funciones, son llamados campos globales. Gran parte de la teoría se puede desarrollar de manera paralela para ambos tipos de objetos. La localización consiste en el pasaje de un campo global a un campo local: en el caso de los campos de funciones, este procedimiento consiste simplemente en dirigir la mirada a un punto en particular de la superficie o variedad estudiada, y concentrarse en cómo las funciones se comportan en su vecindad inmediata.

Referencias

Textos introductorios

  • Kenneth Ireland and Michael Rosen, "A Classical Introduction to Modern Number Theory, Second Edition", Springer-Verlag, 1990
  • Ian Stewart and David O. Tall, "Algebraic Number Theory and Fermat's Last Theorem," A. K. Peters, 2002

Textos intermedios

  • Daniel A. Marcus, "Number Fields"

Referencias avanzadas



Esta página se editó por última vez el 22 oct 2019 a las 18:43.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.