To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Sistema cristalino

De Wikipedia, la enciclopedia libre

Un sólido cristalino se construye a partir de la repetición en el espacio de una estructura elemental paralelepipédica denominada celda unitaria. Los siete sistemas de cristal son triclínico, monoclínico, ortorrómbico, tetragonal, trigonal, hexagonal y cúbico. Informalmente, dos cristales están en el mismo sistema cristalino si tienen simetrías similares (aunque hay muchas excepciones).

En función de los parámetros de red, es decir, de las longitudes de los lados o ejes del paralelepípedo elemental y de los ángulos que forman, se distinguen siete sistemas cristalinos:

Sistema cristalino Ejes Ángulos entre ejes
Cúbico a = b = c α = β = γ = 90°
Tetragonal a = b ≠ c α = β = γ = 90°
Ortorrómbico (o Rómbico) a ≠ b ≠ c α = β = γ = 90°
Hexagonal a = b ≠ c α = β = 90°; γ = 120°
Trigonal (o Romboédrico) a = b = c α = β = γ ≠ 90°
Monoclínico a ≠ b ≠ c α = γ = 90°; β ≠ 90°
Triclínico a ≠ b ≠ c α ≠ β ≠ γ

α, β, γ ≠ 90°

En función de las posibles localizaciones de los átomos en la celda unitaria se establecen 14 estructuras cristalinas básicas, las denominadas redes de Bravais.

YouTube Encyclopedic

  • 1/3
    Views:
    17 184
    10 277
    427
  • Sistemas Cristalográficos : 14 de Bravais
  • Celdas unidad del sistema cúbico y como se originan
  • estructuras cubicas cristalinas

Transcription

Clasificaciones

Los cristales se pueden clasificar de otras maneras, incluyendo familias de cristales y sistemas de entramado. Éstos utilizan grupo espacial, redes y grupo puntual. Las distintas clasificaciones se confunden a menudo: en particular, el sistema cristalino trigonal se confunde a menudo con el sistema de red romboédrica, y el término "sistema cristalino" se utiliza a veces para referirse a uno de los otros.

Los espacios con menos de tres dimensiones tienen el mismo número de sistemas de cristales, familias de cristales y sistemas de red. En un espacio unidimensional, hay un sistema de cristales. En el espacio 2D, hay cuatro sistemas de cristales: oblicuo, rectangular, cuadrado y hexagonal.

Familia de cristales

Una familia de cristales está determinada por las redes y los grupos de puntos. Se forma combinando sistemas cristalinos que tienen grupos espaciales asignados a un sistema de red común. En tres dimensiones, las familias y los sistemas de cristales son idénticos, excepto los sistemas de cristales hexagonales y trigonales, que se combinan en una familia de cristales hexagonales. Las seis familias de cristales son triclínica, monoclínica, ortorrómbica, tetragonal, hexagonal y cúbica.

Cristal hexagonal de hanksita, con simetría en el eje c

Sistema de red cristalina

Un sistema de red cristalina es un grupo de redes cristalinas con el mismo conjunto de grupos de puntos, que son subgrupos del clases aritméticas de cristales. Los grupos espaciales y los cristales se clasifican como sistemas reticulares según sus redes de Bravais. Los 14 entramados de Bravais se agrupan en siete sistemas de entramado: triclínico, monoclínico, ortorrómbico, tetragonal, romboédrico, hexagonal y cúbico.

Cinco de los sistemas cristalinos son esencialmente iguales a cinco de los sistemas de red, mientras que los sistemas cristalinos hexagonales y trigonales son diferentes.

La mayoría de los grupos de puntos se asignan a un único sistema de red, en cuyo caso tanto el cristal como el sistema de red tienen el mismo nombre. Sin embargo, cinco grupos de puntos se asignan a dos sistemas de red, el romboédrico y el hexagonal, porque ambos presentan una triple simetría rotacional. Estos grupos de puntos se asignan al sistema cristalino trigonal.

La relación entre las familias de cristales tridimensionales, los sistemas de cristales y los sistemas de red se muestra en la siguiente tabla:

Familia de cristales Sistema de cristales Simetrías requeridas del grupo de puntos Grupos de puntos Grupo espacial Redes de Bravais Sistema de red
Triclínico Triclínico Ninguno 2 2 1 Triclínico
Monoclínico Monoclínico 1 doble eje de rotación o 1 plano de espejo 3 13 2 Monoclínico
Ortorrómbico Ortorrómbico 3 ejes de rotación dobles o 1 eje de rotación doble y 2 planos de espejo 3 59 4 Ortorrómbico
Sistema cristalino tetragonal Tetragonal 1 eje de rotación cuádruple 7 68 2 Tetragonal
Hexagonal Trigonal 1 eje de rotación triple 5 7 1 Romboedro
18 1 Hexagonal
Hexagonal 1 eje de rotación séxtuple 7 27
Cúbico Cúbico 4 ejes triples de rotación 5 36 3 Cúbico
6 7 Total 32 230 14 7
Nota: no existe un sistema de entramado "trigonal". Para evitar la confusión de la terminología, el término "celosía trigonal" no se utiliza.

Elementos de simetría

El tipo de sistema normal cristalino depende de la disposición simétrica y repetitiva de las caras que forman el cristal. Dicha disposición es consecuencia del ordenamiento interno de sus átomos y, por lo tanto, característico de cada mineral. Las caras se dispondrán según los elementos de simetría que tenga ese sistema, siendo uno de ellos característico de cada uno de los siete sistemas:

Sistema cristalino Elementos característicos
Cúbico Cuatro ejes ternarios
Tetragonal Un eje cuaternario (o binario derivado)
Ortorrómbico Tres ejes binarios o tres planos de simetría
Hexagonal Un eje senario (o ternario derivado)
Trigonal (o Romboédrica) Un eje ternario
Monoclínico Un eje binario o un plano de simetría
Triclínico Un centro de simetría o bien ninguna simetría

Tipos

En otras dimensiones

Espacio bidimensional

El espacio bidimensional tiene el mismo número de sistemas de cristal, familias de cristal y sistemas de celosía. En el espacio 2D, hay cuatro sistemas de cristal: oblicuo, rectangular, cuadrado y hexagonal.

Espacio de cuatro dimensiones

‌La celda unitaria de cuatro dimensiones se define por cuatro longitudes de borde (a, b, c, d) ay seis ángulos interaxiales (α, β, γ, δ, ε, ζ). Las siguientes condiciones para los parámetros de la red definen 23 familias de cristales

Crystal families in 4D space
N.º Familia Longitudes de borde Ángulos interaxiales
1 Hexaclínico abcd αβγδεζ ≠ 90°
2 Triclínico abcd αβγ ≠ 90°
δ = ε = ζ = 90°
3 Diclínico abcd α ≠ 90°
β = γ = δ = ε = 90°
ζ ≠ 90°
4 Monoclínico abcd α ≠ 90°
β = γ = δ = ε = ζ = 90°
5 Ortogonal abcd α = β = γ = δ = ε = ζ = 90°
6 Monoclínico tetragonal ab = cd α ≠ 90°
β = γ = δ = ε = ζ = 90°
7 Monoclínico hexagonal ab = cd α ≠ 90°
β = γ = δ = ε = 90°
ζ = 120°
8 Diclínico ditetragonal a = db = c α = ζ = 90°
β = ε ≠ 90°
γ ≠ 90°
δ = 180° − γ
9 Diclínico ditrigonal (dihexagonal) a = db = c α = ζ = 120°
β = ε ≠ 90°
γδ ≠ 90°
cos δ = cos β − cos γ
10 Ortogonal tetragonal ab = cd α = β = γ = δ = ε = ζ = 90°
11 Ortogonal hexagonal ab = cd α = β = γ = δ = ε = 90°, ζ = 120°
12 Monoclínico ditetragonal a = db = c α = γ = δ = ζ = 90°
β = ε ≠ 90°
13 Ditrigonal (dihexagonal) monoclínico a = db = c α = ζ = 120°
β = ε ≠ 90°
γ = δ ≠ 90°
cos γ = −1/2cos β
14 Ditetragonal ortogonal a = db = c α = β = γ = δ = ε = ζ = 90°
15 Tetragonal hexagonal a = db = c α = β = γ = δ = ε = 90°
ζ = 120°
16 Dihexagonal ortogonal a = db = c α = ζ = 120°
β = γ = δ = ε = 90°
17 Cúbico ortogonal a = b = cd α = β = γ = δ = ε = ζ = 90°
18 Octagonal a = b = c = d α = γ = ζ ≠ 90°
β = ε = 90°
δ = 180° − α
19 Decagonal a = b = c = d α = γ = ζβ = δ = ε
cos β = −1/2 − cos α
20 Dodecagonal a = b = c = d α = ζ = 90°
β = ε = 120°
γ = δ ≠ 90°
21 Diisohexagonal ortogonal a = b = c = d α = ζ = 120°
β = γ = δ = ε = 90°
22 Icosagonal (icosaedro) a = b = c = d α = β = γ = δ = ε = ζ
cos α = −1/4
23 Hipercúbico a = b = c = d α = β = γ = δ = ε = ζ = 90°

Los nombres aquí se dan según Whittaker.[1]​ Son casi los mismos que en Brown et al,[2]​ con excepción de los nombres de las familias de cristales 9, 13 y 22. Los nombres de estas tres familias según Brown et al se dan entre paréntesis.

La relación entre las familias de cristales cuatridimensionales, los sistemas cristalinos y los sistemas reticulares se muestra en la siguiente tabla.[1][2]​ Los sistemas enantiomórficos están marcados con un asterisco. El número de pares enantiomórficos se da entre paréntesis. Aquí, el término "enantiomórfico" tiene un significado diferente al de la tabla para las clases de cristales tridimensionales. Esto último significa que los grupos puntuales enantiomórficos describen estructuras quirales (enantiomórficas). En la tabla actual, "enantiomórfico" significa que un grupo en sí mismo (considerado como un objeto geométrico) es enantiomórfico, como pares enantiomórficos de grupos espaciales tridimensionales P31 and P32, P4122 y P4322. A partir del espacio de cuatro dimensiones, los grupos puntuales también pueden ser enantiomórficos en este sentido.

Sistemas de cristal en el espacio 4D
N.º de
familia cristalina
Familia de cristal Sistema de cristal N.º de sistema de cristal de
Grupos de puntos Grupos espaciales Redes de Bravais Sistema de celosía
I Hexaclínico 1 2 2 1 P hexaclínico
II Triclínico 2 3 13 2 P, S triclínico
III Diclínico 3 2 12 3 P, S, D diclínico
IV Monoclínico 4 4 207 6 P, S, S, I, D, F monoclínico
V Ortogonal Ortogonal no axial 5 2 2 1 Ortogonal KU
112 8 Ortogonal P, S, I, Z, D, F, G, U
Ortogonal axial 6 3 887
VI Monoclínico tetragonal 7 7 88 2 Tetragonal monoclínico P, I
VII Hexagonal monoclínico Trigonal monoclínico 8 5 9 1 Hexagonal monoclínico R
15 1 Hexagonal monoclínico P
Hexagonal monoclínico 9 7 25
VIII Diclínico ditetragonal* 10 1 (+1) 1 (+1) 1 (+1) Diclínico ditetragonal P*
IX Diclínico ditetragonal* 11 2 (+2) 2 (+2) 1 (+1) Diclínico ditrigonal P*
X Ortogonal tetragonal Ortogonal tetragonal inversa 12 5 7 1 Ortogonal tetragonal KG
351 5 Ortogonal tetragonal P, S, I, Z, G
Ortogonal tetragonal propia 13 10 1312
XI Ortogonal hexagonal Ortogonal trigonal 14 10 81 2 Ortogonal hexagonal R, RS
150 2 Ortogonal hexagonal P, S
Ortogonal hexagonal 15 12 240
XII Monoclínico ditetragonal* 16 1 (+1) 6 (+6) 3 (+3) Monoclínico ditetragonal P*, S*, D*
XIII Monoclínico ditrigonal* 17 2 (+2) 5 (+5) 2 (+2) Monoclínico ditrigonal P*, RR*
XIV Ditetragonal ortogonal Cripto-ditetragonal ortogonal 18 5 10 1 Ditetragonal ortogonal D
165 (+2) 2 Ditetragonal ortogonal P, Z
Ditetragonal ortogonal 19 6 127
XV Hexagonal tetragonal 20 22 108 1 Hexagonal tetragonal P
XVI Dihexagonal ortogonal Cripto-ditrigonal ortogonal* 21 4 (+4) 5 (+5) 1 (+1) Dihexagonal ortogonal G*
5 (+5) 1 Dihexagonal ortogonal P
Dihexagonal ortogonal 23 11 20
ditrigonal ortogonal 22 11 41
16 1 Dihexagonal ortogonal RR
XVII Ortogonal cúbico Ortogonal cúbico simple 24 5 9 1 Ortogonal cúbico KU
96 5 Ortogonal cúbico P, I, Z, F, U
Ortogonal cúbico complejo 25 11 366
XVIII Octagonal* 26 2 (+2) 3 (+3) 1 (+1) Octagonal P*
XIX Decagonal 27 4 5 1 Decagonal P
XX Dodecagonal* 28 2 (+2) 2 (+2) 1 (+1) Dodecagonal P*
XXI Ortogonal diisohexagonal Ortogonal diisohexagonal simple 29 9 (+2) 19 (+5) 1 Ortogonal diisohexagonal RR
19 (+3) 1 Ortogonal diisohexagonal P
Ortogonal diisohexagonal complejo 30 13 (+8) 15 (+9)
XXII Icosagonal 31 7 20 2 Icosagonal P, SN
XXIII Hipercúbico Hipercúbico octagonalc 32 21 (+8) 73 (+15) 1 Hipercúbico P
107 (+28) 1 Hipercúbico Z
Hipercúbico dodecagonal 33 16 (+12) 25 (+20)
Total 23 (+6) 33 (+7) 227 (+44) 4783 (+111) 64 (+10) 33 (+7)

Referencias

  1. a b Whittaker, E. J. W. (1985). An Atlas of Hyperstereograms of the Four-Dimensional Crystal Classes. Oxford: Clarendon Press. ISBN 978-0-19-854432-6. OCLC 638900498. 
  2. a b Brown, H.; Bülow, R.; Neubüser, J.; Wondratschek, H.; Zassenhaus, H. (1978). Crystallographic Groups of Four-Dimensional Space. New York: Wiley. ISBN 978-0-471-03095-9. OCLC 939898594. 

Bibliografía

Esta página se editó por última vez el 12 may 2023 a las 07:50.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.