To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Satélite artificial

De Wikipedia, la enciclopedia libre

Flota de satélites de la NASA para la observación de la Tierra desde junio de 2012

En el contexto de los vuelos espaciales, un satélite es un objeto que ha sido puesto en órbita intencionadamente. Estos objetos se llaman satélites artificiales para distinguirlos de los satélites naturales, como la Luna de la Tierra.

El 4 de octubre de 1957 la Unión Soviética lanzó el primer satélite artificial, el Sputnik 1. Desde entonces, alrededor de unos 8.900 satélites han sido lanzados por más de 40 países. Según una estimación hecha en 2018, unos 5000 permanecen en órbita. De ellos, unos 1900 estaban operativos, mientras que el resto ha cumplido con su vida útil y se han convertido en basura espacial.

Los satélites se utilizan para muchos propósitos. Entre las modalidades más frecuentes se incluyen a los satélites de observación terrestre tanto civiles como militares, satélites de comunicaciones, satélites de navegación, satélites meteorológicos, observatorio espaciales. Las estaciones espaciales y las naves espaciales en órbita también son satélites.

Más de una docena de sondas espaciales han sido situadas en órbita alrededor de otros cuerpos celestes y han pasado a ser satélites artificiales de la Luna, Mercurio, Venus, Marte, Júpiter, Saturno, un cometa, el Sol y unos cuantos asteroides.

Las órbitas de los satélites varían considerablemente en función de la finalidad del satélite. Las más usadas son la órbita baja terrestre donde se ubica el 63% de los satélites operativos y la órbita geoestacionaria donde está el 29%.

Artificial Satellites around Earth from 2000 to 2020

Los satélites pueden funcionar independientemente o como parte de un sistema más grande, ya sea mediante una formación de satélites o a través de una constelación de satélites.

Una lanzadera espacial es un cohete que coloca un satélite en órbita y, por lo general, despegan desde una plataforma de lanzamiento en tierra. Algunos se lanzan desde un submarino o una plataforma marítima móvil, aunque también se puede hacer a bordo de un avión.

Los satélites suelen ser sistemas semiindependientes controlados por ordenador. Los subsistemas satelitales están a cargo de muchas tareas, como la generación de energía, el control térmico, la telemetría, el control de altitud, la instrumentación científica, la comunicación, etc.

YouTube Encyclopedic

  • 1/5
    Views:
    19 692
    169 485
    89 704
    22 333
    327 984
  • Hay más de 2400 satélites orbitando a la Tierra y así se ven #ciencia #curiosidades #física
  • 🌑 Satélites: Naturales y Artificiales 🛰
  • ¿Cómo se SOSTIENEN los SATÉLITES🛰️ en el ESPACIO?🌐│Te lo explico👨‍🏫│
  • Satelites artificiales; qué son, cómo funcionan, y cómo se lanzan al espacio.
  • ¿POR QUÉ NO SE VEN LOS SATÉLITES?

Transcription

Antecedentes históricos

La primera obra de ficción conocida que describe cómo un satélite artificial es lanzado a una órbita alrededor de la Tierra, aparece en un cuento de Edward Everett Hale, The Brick Moon (La luna de ladrillo), que fue publicado por entregas en Atlantic Monthly en 1869.

La idea reaparece en Los quinientos millones de la Begún (1879) de Julio Verne.[1]​ En este libro, sin embargo, se trata de un resultado no intencionado del villano, al construir una pieza de artillería gigante para destruir a sus enemigos. Este le imprime al proyectil una velocidad superior a la pretendida, lo que lo deja en órbita como un satélite artificial.

En 1903, el ruso Konstantín Tsiolkovski publicó La exploración del espacio cósmico por medio de los motores de reacción, que es el primer tratado académico sobre el uso de cohetes para lanzar naves espaciales. Tsiolkovski calculó que la velocidad orbital requerida para una órbita mínima alrededor de la Tierra es, aproximadamente, 8 km/s y que se necesitaría un cohete de múltiples etapas que utilizase oxígeno líquido e hidrógeno líquido como combustible. Durante su vida, publicó más de 500 obras relacionadas con el viaje espacial, propulsores de múltiples etapas, estaciones espaciales, escotillas para salir de una nave en el espacio y un sistema biológico cerrado para proporcionar comida y oxígeno a las colonias espaciales. También profundizó en las teorías sobre máquinas voladoras más pesadas que el aire, trabajando de forma independiente en mucho de los cálculos que realizaban los hermanos Wright en ese momento.[2]

En 1928, Herman Potočnik publicó su único libro, Das Problem der Befahrung des Weltraums - der Raketen-motor (El problema del viaje espacial - el motor-cohete), un plan para progresar hacia el espacio y mantener presencia humana permanente. Potočnik diseñó una estación espacial y calculó su órbita geoestacionaria. También describió el uso de naves orbitales para observaciones pacíficas y militares y como se podrían utilizar las condiciones del espacio para realizar experimentos científicos. El libro describía satélites geoestacionarios, y analizaba la comunicación entre ellos y la tierra utilizando la radio, pero no trataba la idea de utilizarlos para comunicación en masa y como estaciones de telecomunicaciones.[3]

En 1945, el escritor británico de ciencia ficción Arthur C. Clarke concibió la posibilidad de utilizar una serie de satélites de comunicaciones en su artículo en Wireless World, «Extra terrestrial relays». Clarke examinó la logística de un lanzamiento de satélite, las posibles órbitas y otros aspectos para la creación de una red de satélites, señalando los beneficios de la comunicación global de alta velocidad. También sugirió que tres satélites geoestacionarios proporcionarían la cobertura completa del planeta, pudiendo ser reemplazados cuando agotaran su vida útil.[4]

Historia de los satélites artificiales

Satélite ERS-2.

Los satélites artificiales nacieron durante la guerra fría entre Estados Unidos y la Unión Soviética, que pretendían ambos conquistar el espacio. En mayo de 1946, el Proyecto RAND presentó el informe Preliminary Design of an Experimental World-Circling Spaceship (Diseño preliminar de una nave espacial experimental en órbita), en el cual se decía que «Un vehículo satélite con instrumentación apropiada puede ser una de las herramientas científicas más poderosas del siglo XX. La realización de una nave satélite produciría una repercusión comparable con la explosión de la bomba atómica...».[5]

La era espacial comenzó en 1946, cuando los científicos comenzaron a utilizar los cohetes capturados V-2 alemanes para realizar mediciones de la atmósfera.[6]​ Antes de ese momento, los científicos utilizaban globos que llegaban a los 30 km de altitud y ondas de radio para estudiar la ionosfera. Desde 1946 a 1952 se utilizó los cohetes V-2 y Aerobee para la investigación de la parte superior de la atmósfera, lo que permitía realizar mediciones de la presión, densidad y temperatura hasta una altitud de 200 km.

Estados Unidos había considerado lanzar satélites orbitales desde 1945 bajo la Oficina de Aeronáutica de la Armada. El Proyecto RAND de la Fuerza Aérea presentó su informe pero no se creía que el satélite fuese una potencial arma militar, sino más bien una herramienta científica, política y de propaganda. En 1954, el Secretario de Defensa afirmó: «No conozco ningún programa estadounidense de satélites».

Tras la presión de la Sociedad Americana del Cohete (ARS), la Fundación Nacional de la Ciencia (NSF) y el Año Geofísico Internacional, el interés militar aumentó y a comienzos de 1955 la Fuerza Aérea y la Armada estaban trabajando en el Proyecto Orbiter, que evolucionaría para utilizar un cohete Jupiter-C en el lanzamiento de un satélite denominado Explorer 1 el 31 de enero de 1958.

El 29 de julio de 1955, la Casa Blanca anunció que los Estados Unidos intentarían lanzar satélites a partir de la primavera de 1958. Esto se convirtió en el Proyecto Vanguard. El 31 de julio, los soviéticos anunciaron que tenían intención de lanzar un satélite en el otoño de 1957.

El hito soviético que cambió el mundo

Artículo principal, Sputnik 1

Satélite soviético Sputnik 1.
Señal radial del Sputnik.

La Unión Soviética, desde el Cosmódromo de Baikonur, lanzó el primer satélite artificial de la humanidad, el 4 de octubre de 1957; marcando con ello el comienzo de la carrera espacial, logrando que la Unión Soviética, se adelantara a Estados Unidos en dicha carrera. Este programa fue llamado Sputnik, el cual al momento de colocarse exitosamente en órbita, emitió unas señales radiales en forma de pitidos, demostrando el éxito alcanzado por los científicos soviéticos.[7]

Este programa fue seguido por otros logros rusos, como los programas Sputnik 2 y 3. Cabe señalar que en el Sputnik 2, la URSS logró colocar en órbita el primer animal en la historia, la perra llamada Laika. Con el Sputnik, la Unión Soviética, provocó una inseguridad en los Estados Unidos, debido al temor de que los soviéticos tengan misiles de largo alcance, dado que tenían la capacidad de lanzamientos orbitales.

En 1960 EE. UU. lanzó el primer satélite de comunicaciones: el Echo I era un satélite pasivo que no estaba equipado con un sistema bidireccional sino que funcionaba como un reflector. En 1962 EE. UU. lanzó el primer satélite de comunicaciones activos, el Telstar I, creando el primer enlace televisivo internacional.

La SSN (Red de Vigilancia Espacial) ha estado rastreando los objetos espaciales desde 1957, tras el lanzamiento del Sputnik I. Desde entonces, la SSN ha registrado más de 26 000 objetos orbitando sobre la Tierra y mantiene su rastreo sobre unos 8000 objetos de fabricación humana. El resto entran de nuevo en la atmósfera donde se desintegran o si resisten, impactan con la Tierra. Los objetos pueden pesar desde varias toneladas, como etapas de cohetes, hasta sólo unos kilogramos. Aproximadamente el 7% de los objetos espaciales (unos 560 satélites) están en funcionamiento, mientras que el resto son chatarra espacial.

Se hace mención que una réplica idéntica, desarrollada en la República Socialista Federativa Soviética de Rusia, del famoso Sputnik se encuentra en el vestíbulo principal del edificio de las Naciones Unidas, en la ciudad de Nueva York, como símbolo del desarrollo tecnológico alcanzado por el hombre.[cita requerida]

Tipos de satélites artificiales

Se pueden clasificar los satélites artificiales en dos grandes categorías: Satélites de Observación y Satélites de comunicaciones.[8]

Entre los satélites de Observación se incluyen todos aquellos que recopilan datos y los envían a la tierra para su uso. Una gran cantidad de satélites en esta categoría toman fotografías de la propia tierra (o el cuerpo al cual orbitan), usando diferentes longitudes de onda. Pero también incluyen muy diversos campos de observación, como fotografía u observación astronómica, detectores del ambiente espacial (rayos cósmicos, viento solar, magnetismo), y otros campos.

Entre los satélites de Comunicación se incluyen los usados para retransmisión de señales de un punto a otro de la tierra, facilitando las comunicaciones y la difusión. Este es el uso más comercial de los satélites e incluye cobertura a radio, televisión, internet, telefonía y otros usos.

Sin embargo, también es usual clasificar los satélites por su finalidad específica, y también por el tipo de órbita que describen:

Por finalidad

Por tipo de órbita

Las órbitas de los satélites artificiales de La Tierra se pueden clasificar por:

Réplica del PeruSat-1, el satélite más avanzado que posee Perú.
Por altitud
  • Órbita baja terrestre (LEO): Son satélites de órbita baja están a una altura de 700 a 1400 km y tienen un periodo orbital de 80 a 150 minutos.
  • Órbita media terrestre (MEO): rota de 9000 a 20 000 km y tiene un periodo orbital de 10 a 14 horas. También se la conoce como órbita circular intermedia. Aquí se ubica el 6% de los satélites operativos (a 2018)También se la conoce como órbita circular intermedia.
  • Órbita geoestacionaria (GEO): Es una órbita a una altura de 35 786 km sobre el ecuador terrestre. Tiene un periodo orbital de 24 horas permaneciendo siempre sobre el mismo lugar de la tierra.
  • Órbita alta terrestre (HEO): una órbita geocéntrica por encima de la órbita geosíncrona de 35 786 km; también conocida como órbita muy excéntrica u órbita muy elíptica.
Por su centro
Por excentricidad
Por inclinación
Por sincronía
  • Órbita areoestacionaria (AEO): una órbita areosíncrona circular sobre el plano ecuatorial a unos 17 000 km de altitud. Similar a la órbita geoestacionaria pero en Marte.
  • Órbita areosíncrona (ASO): una órbita síncrona alrededor del planeta Marte con un periodo orbital igual al día sideral de Marte, 24,6229 horas.
  • Órbita geosíncrona (GSO): una órbita a una altitud de 35 768 km. Estos satélites trazarían una analema en el cielo.
    • Órbita cementerio: una órbita a unos cientos de kilómetros por encima de la geosíncrona donde se trasladan los satélites cuando acaba su vida útil.
    • Órbita geoestacionaria (GEO): una órbita geosíncrona con inclinación cero. Para un observador en el suelo, el satélite parecería un punto fijo en el cielo.
  • Órbita heliosíncrona: una órbita heliocéntrica sobre el Sol donde el periodo orbital del satélite es igual al periodo de rotación del Sol. Se sitúa a aproximadamente 0,1628 UA.
  • Órbita semisíncrona: una órbita a una altitud de 12 544 km aproximadamente y un periodo orbital de unas 12 horas.
  • Órbita síncrona: una órbita donde el satélite tiene un periodo orbital igual al periodo de rotación del objeto principal y en la misma dirección. Desde el suelo, un satélite trazaría una analema en el cielo.
Otras órbitas

Fin de vida útil

Cuando los satélites finalizan su vida útil, los operadores del satélite pueden desorbitar el satélite, moverlo a una órbita cementerio o dejarlo en su órbita actual. Históricamente, debido a restricciones presupuestarias al principio de las misiones de los satélites, rara vez se diseñaban satélites para ser desorbitados. La mayoría de los satélites son movidos a una órbita cementerio o dejados en su órbita. A partir de 2002, la FCC obliga a todos los satélites estadounidenses geoestacionarios a que se comprometan, antes del lanzamiento, a mover el satélite a una órbita cementerio una vez terminada su vida operacional.[10]

En los casos en los que los satélites caen descontroladamente a la Tierra, la altura de desintegración del satélite debida a fuerzas aerodinámicas y temperatura es de 78 km, con un rango entre 72 y 84 km. Los paneles solares son destruidos antes que cualquier otro componente a altitudes entre 90 y 95 km.[11]

Países con capacidad de lanzamiento

Un total de once países y el grupo formado por la ESA (Agencia Espacial Europea) han lanzado satélites a órbita, incluyendo la fabricación del vehículo de lanzamiento. Existe también otros países que tienen capacidad para diseñar y construir satélites, pero no han podido lanzarlos de forma autónoma sino con la ayuda de servicios extranjeros.

Primer lanzamiento por país
País Año del primer lanzamiento Primer satélite Cargas útiles en órbita a 2018[12]
Bandera de la Unión Soviética
 
Unión Soviética
1957 Sputnik 1 1.510 (Rusia, Ucrania)
Bandera de Estados Unidos
 
Estados Unidos
1958 Explorer 1 1.579
Bandera de Francia
 
Francia
1965 Astérix 61
Japón
Bandera de Japón
 
Japón
1970 Osumi 172
China
Bandera de la República Popular China
 
China
1970 Dong Fang Hong I 316
Reino Unido
Bandera del Reino Unido
 
Reino Unido
1971 Prospero X-3 47
Bandera de la India
 
India
1981 Rohini 89
Israel
Bandera de Israel
 
Israel
1988 Ofeq 1 18
Irán
Bandera de Irán
 
Irán
2009 Omid 1
Corea del Norte
Bandera de Corea del Norte
 
Corea del Norte
2012 Kwangmyŏngsŏng-3[13] 2
Corea del Sur
Bandera de Corea del Sur
 
Corea del Sur
2013 STSAT-2C 24

El programa espacial de Brasil ha intentado en tres ocasiones fallidas lanzar satélites, la última en 2003. Irak aparece en ocasiones como país con capacidad de lanzamiento con un satélite de 1989 aunque no ha sido confirmado. Corea del Norte afirma haber lanzado su satélite Kwangmyongsong en 1998, aunque tampoco está confirmado. La ESA lanzó su primer satélite a bordo de un Ariane 1 el 24 de diciembre de 1979. Argentina a la fecha se encuentra en fase de pruebas como paso intermedio para el desarrollo final de su propio lanzador satelital Tronador el cual se prevé que este listo para el periodo 2022.

Primer lanzamiento por país incluyendo la ayuda de otros[14]
País Año del primer lanzamiento Primer satélite Cargas útiles en órbita a 2018
Bandera de la Unión Soviética
 
Unión Soviética (Rusia)
1957 Sputnik 1 1507 (Rusia, Ucrania)
Bandera de Estados Unidos
 
Estados Unidos
1958 Explorer 1 1619
CanadáBandera de Canadá Canadá 1962 Alouette 1 48
Italia Italia 1964 San Marco 2 27
Bandera de Francia
 
Francia
1965 Astérix 68
Bandera de Australia
 
Australia
1967 WRESAT 21
Alemania Alemania 1969 Azur 54
Japón
Bandera de Japón
 
Japón
1970 Osumi 173
China
Bandera de la República Popular China
 
China
1970 Dong Fang Hong I 312
Reino Unido
Bandera del Reino Unido
 
Reino Unido
1971 Prospero X-3 43
Polonia Polonia 1973 Intercosmos Kopernikus 500 2
Países Bajos Países Bajos 1974 ANS 6
EspañaBandera de España España 1974 Intasat 24
Bandera de la India
 
India
1975 Aryabhata 88
Indonesia
Bandera de Indonesia
 
Indonesia
1976 Palapa A1 16
Bandera de Checoslovaquia
 
Checoslovaquia
1979 Magion 1 5
Bulgaria
Bandera de Bulgaria
 
Bulgaria
1981 Intercosmos 22 1
BrasilBandera de Brasil Brasil 1985 BrasilSat A1 17
México México 1985 Morelos I 12
Suecia Suecia 1986 Viking 12
Israel
Bandera de Israel
 
Israel
1988 Ofeq 1 17
Luxemburgo
Bandera de Luxemburgo
 
Luxemburgo
1988 Astra 1A 4
Bandera de Argentina
 
Argentina
1990 Lusat 1 19
Pakistán
Bandera de Pakistán
 
Pakistán
1990 Badr-1 6
Corea del Sur
Bandera de Corea del Sur
 
Corea del Sur
1992 Kitsat A 24
Bandera de Portugal
 
Portugal
1993 PoSAT-1 2
Bandera de Tailandia
 
Tailandia
1993 Thaicom 1 9
Turquía
Bandera de Turquía
 
Turquía
1994 Turksat 1B 15
ChileBandera de Chile Chile 1995 Fasat-Alfa 3
Malasia
Bandera de Malasia
 
Malasia
1996 MEASAT 4
Noruega Noruega 1997 Thor 2 9
Filipinas
Bandera de Filipinas
 
Filipinas
1997 Mabuhay 1 2
Egipto Egipto 1998 Nilesat 101 5
Singapur
Bandera de Singapur
 
Singapur
1998 ST-1 10
Dinamarca
Bandera de Dinamarca
 
Dinamarca
1999 Ørsted 9
Bandera de Sudáfrica
 
Sudáfrica
1999 SUNSAT 6
Arabia Saudita
Bandera de Arabia Saudita
 
Arabia Saudita
2000 Saudisat 1A 12
Emiratos Árabes Unidos Emiratos Árabes Unidos 2000 Thuraya 1 9
Argelia
Bandera de Argelia
 
Argelia
2002 Alsat 1 6
Grecia Grecia 2003 Hellas Sat 2 4
Nigeria
Bandera de Nigeria
 
Nigeria
2003 Nigeriasat 1 6
Irán
Bandera de Irán
 
Irán
2005 Sina-1 1
Kazajistán Kazajistán 2006 KazSat 1 1
ColombiaBandera de Colombia Colombia 2007 Libertad 1 2
Vietnam
Bandera de Vietnam
 
Vietnam
2008 VINASAT-1 3
VenezuelaBandera de Venezuela Venezuela 2008 VENESAT-1 3
Letonia
Bandera de Letonia
 
Letonia
2009 Venta-1 1
EcuadorBandera de Ecuador Ecuador 2013 NEE-01 Pegaso 2
Bolivia Bolivia 2013 TKSAT-1 (Túpac Katari) 1
Perú Perú 2013 PUCP SAT-1 5
Uruguay Uruguay 2014 Antel-Sat 1
Costa Rica Costa Rica 2018 Batsú-CS1 (Proyecto Irazú) 1
Guatemala Guatemala 2020 Quetzal-1 (Proyecto UV ) 1
Paraguay
Bandera de Paraguay
Paraguay
2021 GuaraníSat-1 1

Kazajistán lanzó su satélite en 2006 de forma independiente, pero fue fabricado por Rusia y el diseño del cohete tampoco era autóctono. Canadá fue el tercer país en fabricar un satélite y lanzarlo al espacio, aunque utilizó un cohete estadounidense y fue lanzado desde Estados Unidos. El San Marco 2 de Italia fue lanzado el 26 de abril de 1967 utilizando un cohete Scout estadounidense. Australia lanzó su primer satélite el 29 de noviembre de 1967, sin embargo utilizaba un cohete donado Redstone. Las capacidades de lanzamiento del Reino Unido y Francia están ahora bajo la ESA y la capacidad de lanzamiento de la Unión Soviética bajo Rusia. El Libertad 1 de Colombia lanzado en 2007 es un satélite miniaturizado de menos de 1 kg. El 28 de septiembre de 2012 fue lanzado en China el segundo satélite propiedad de Venezuela, el satélite de observación Miranda (VRSS-1, por sus sigla en inglés). El 26 de abril de 2013, Ecuador lanzó su primer satélite, construido dentro del país, con la ayuda de un cohete chino.[15]​ El 20 de diciembre de 2013, Bolivia lanzó su primer satélite, construido en China, con la ayuda de un cohete chino.[16]Perú desarrolló sus dos primeros satélites, PUCP SAT-1 y Pocket-PUCP, que fueron lanzados y puestos en órbita el 21 de noviembre del 2013 por un cohete ruso Dnepr-1. El satélite costarricense Batsú-CS1, construido en el país por la Asociación Centroamericana de Aeronáutica y del Espacio (ACAE) y el Instituto Tecnológico de Costa Rica (TEC), fue lanzado el día 2 de abril de 2018 con la ayuda de la compañía estadounidense SpaceX, por medio del cohete Falcon 9.[17]

Ataques contra satélites

Desde mediados de la década de 2000, han sido pirateadas satélites por organizaciones militantes para emitir propaganda y robar datos secretos de redes militares de comunicaciones.[18][19]

Véase también

Referencias

  1. «http://www.lesia.obspm.fr/perso/jacques-crovisier/JV/verne_CI.html». Consultado el 16 de marzo de 2017. 
  2. Pedro Gómez-Esteban (19 de mayo de 2008). «Konstantin Tsiolkovsky». El Tamiz. Consultado el 16 de marzo de 2016. 
  3. Libro completo publicado por la NASA: [1]
  4. «The 1945 Proposal by Arthur C. Clarke for Geostationary Satellite Communications» (en inglés). Archivado desde el original el 8 de marzo de 2020. Consultado el 17 de marzo de 2016. 
  5. «Preliminary Design of an Experimental World-Circling Spaceship» (en inglés). RAND Corporation. Consultado el 17 de marzo de 2016. 
  6. Hess, Wilmot (1968). The Radiation Belt and Magnetosphere. 
  7. Steve Garber. «Sputnik and The Dawn of the Space Age». Nasa. Consultado el 17 de marzo de 2017. 
  8. «TIPOS DE SATELITES». Consultado el 19 de marzo de 2017. 
  9. La web de Física. «Cálculo de la velocidad en órbitas elípticas». Consultado el 4 de octubre de 2017. 
  10. «Space News June 28, 2004». web.archive.org. 24 de julio de 2009. Archivado desde el original el 24 de julio de 2009. Consultado el 19 de julio de 2020. 
  11. «SATVIEW - Forecast for reentry of space junk (). Track it in Real time». www.satview.org (en inglés). Consultado el 19 de julio de 2020. 
  12. «Copia archivada». Archivado desde el original el 25 de febrero de 2023. Consultado el 28 de abril de 2007. 
  13. «Corea del norte lanza un cohete de largo alcance». 12 de diciembre de 2012. Consultado el 31 de diciembre de 2012. 
  14. «First time in History». The Satellite Encyclopedia. Consultado el 6 de marzo de 2008. 
  15. http://www.eluniverso.com/2013/04/26/1/1445/fue-lanzado-espacio-pegaso-primer-satelite-ecuatoriano.html
  16. http://www.satlaunch.net/2013/03/tupak-katari-satellite-tksat-1.html
  17. Venegas, Johan Umaña (6 de marzo de 2018). «Satélite tico será lanzado al espacio el 2 de abril a bordo de un Falcon 9 de SpaceX». Hoy en el TEC. Consultado el 10 de abril de 2018. 
  18. Morrill, Dan. «Hack a Satellite while it is in orbit». ITtoolbox. Archivado desde el original el 20 de marzo de 2008. Consultado el 25 de marzo de 2008. 
  19. «AsiaSat accuses Falungong of hacking satellite signals». Press Trust of India. 22 de noviembre de 2004. 

Enlaces externos

Esta página se editó por última vez el 14 mar 2024 a las 11:40.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.