To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Reverberación convolutiva

De Wikipedia, la enciclopedia libre

Dos sonidos calibrados con un mismo offset, atacan a una Puerta lógica 'entrenada' para aplicar una transformación

La reverberación convolutiva es un procesamiento digital de audio basado en el cálculo matemático de convolución. Permite simular la reverberación de entornos físicos o de unidades de reverb hardware. Utiliza respuestas a impulsos, que son muestras de audio pregrabadas de la respuesta de las reflexiones que genera el entorno, ya sea físico o virtual, a simular posteriormente. Las señales procesadas con este tipo de reverb sonarán como si la fuente de sonido se encontrase realmente en el entorno simulado.

YouTube Encyclopedic

  • 1/2
    Views:
    907
    5 872
  • FL Studio Tutorial: Convolver (Reverb Realista, Blur y efectos de convolucion)
  • Cómo aplicar un reverb más real - Fruity Convolver - Tutorial

Transcription

Obtención de respuestas a impulsos

Una sala se comporta con respecto a una fuente sonora de forma similar a un proceso de convolución. Este proceso matemático convierte dos funciones f y g en una tercera, la cual representa la magnitud en la que se superponen la primera y una versión trasladada e invertida de la segunda. El producto de convolución de dichas funciones responde a la integral ( f * g )(t ) = ∫ f (τ ) g (t − τ )dτ . ( f * g )(t ) = ∫ f (τ ) g (t − τ )dτ.

El impulso perfecto sería el que tuviese una duración infinitamente corta en el tiempo y nos proporcionase un ancho de banda en frecuencias también infinito. Esto es imposible pero matemáticamente hablando no lo es. Para ello se utiliza la delta de Dirac ( δ (t ) ) que es una distribución cuyo valor es infinito en un determinado punto y cero para los restantes. Esto implica que el ancho de banda será infinito, y que la integral entre más y menos infinito será uno. Al hacerse el producto entre cualquier función y la delta de Dirac el resultado es la función inicial f (t) *δ (t) = f (t). La función f (t) es lo que llamamos la respuesta al impulso y nos proporciona la información sobre las modificaciones de tiempo y frecuencia que sufriría la señal inicial reproducida en dicha sala.

Aplicaciones

Simulación de entornos reales

El uso más común de las reverberaciones convolutivas es la simulación de espacios reales con el fin de imitar su acústica. Reproduciendo y grabando un impulso, esto es, un sonido de muy corta duración (normalmente una chispa eléctrica o un barrido de ondas senoidales) en dicho espacio.

Simulación de entornos virtuales

También se utilizan para simular la respuesta de u

Véase también

Enlaces externos

Esta página se editó por última vez el 18 ene 2024 a las 16:04.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.