To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Relación transitiva

De Wikipedia, la enciclopedia libre

Ejemplo: Si a es mayor que b, y b es mayor que c, entonces, a es mayor que c.
Ejemplo: Si a es mayor que b, y b es mayor que c, entonces, a es mayor que c.

Una relación binaria sobre un conjunto es transitiva[1][2]​ cuando se cumple: siempre que un elemento se relaciona con otro y este último con un tercero, entonces el primero se relaciona con el tercero.

Esto es:

Dado el conjunto A y una relación R, esta relación es transitiva si: a R b y b R c se cumple a R c.

La propiedad anterior se conoce como transitividad.

Ejemplos

Así por ejemplo dado el conjunto N de los números naturales y la relación de orden "menor o igual que" vemos que es transitiva:

Así, puesto que:

En general las relaciones de orden (ser menor, mayor, igual, menor o igual, mayor o igual) son transitivas.

Tomando de nuevo el conjunto de los números naturales, y la relación divide a:

Para cualquiera de los números naturales a, b y c: si a divide a b y b divide a c entonces a divide a c

Dado que 3|12 (3 divide a 12) y 12|48 (12 divide a 48), la transitividad establece que 3|48 (3 divide a 48).

Sin embargo, no todas las relaciones binarias son transitivas. La relación "no es subconjunto" no es transitiva. Por ejemplo, si X = {1,2,3}, Y={2,3,4,5}, Z={1,2,3,4}. Entonces

Se cumple y pero no se cumple puesto que es subconjunto de .

Otro ejemplo de relación binaria que no es transitiva es "ser la mitad de": 5 es la mitad de 10 y 10 es la mitad de 20, pero 5 no es la mitad de 20.

Representación

Una relación binaria se puede representar como pares ordenados, mediante una matriz de adyacencia o mediante un grafo. Para el caso de una relación transitiva, cada una de estas representaciones tiene características especiales:

  • Como pares ordenados,
  • Como matriz de adyacencia , la matriz es tal que
  • Como grafo, cada vez que desde un nodo se pueda llegar a otro , pasando primero por un nodo intermedio , entonces también existirá la arista .

Véase también

Propiedades de la relación binaria homogénea:

Conceptos relacionados:

Referencias

  1. Caicedo Barrero, Alfredo; Wagner de Gardia, Graciela; Me¡éndez Parra, Rosa María (2010). «2.4». Introducción a la Teoría de Grafos (1 edición). Ediciones Elizcom. p. 21. ISBN 978-958-993-257-5. 
  2. Richard Johnsonbaugh (2005). «3». Matemáticas discretas (6 edición). Pearson Educación. p. 118. ISBN 978-970-260-637-6. 


Esta página se editó por última vez el 27 mar 2021 a las 12:17.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.