To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

De Wikipedia, la enciclopedia libre

El radián (símbolo: rad) es una unidad de ángulo en el plano en el Sistema Internacional de Unidades. El radián mide el ángulo presentado como central a una circunferencia y su medida es igual a la razón entre la longitud del arco que comprende de dicha circunferencia y la longitud del radio, es decir, mide la cantidad de veces que la longitud del radio cabe en dicho arco. Hasta 1995 tuvo la categoría de unidad suplementaria en el Sistema Internacional de Unidades, junto con el estereorradián. A partir de ese año, y hasta el momento presente, ambas unidades figuran en la categoría de unidades derivadas.

Esta unidad se utiliza primordialmente en física, cálculo infinitesimal, trigonometría, goniometría, etc.

Un ángulo de 1 radián corresponde al arco de circunferencia cuya longitud es su radio. Una circunferencia completa corresponde a 2π radianes.
Un ángulo de 1 radián corresponde al arco de circunferencia cuya longitud es su radio. Una circunferencia completa corresponde a 2π radianes.

Definición

Un radián es la unidad de medida de un ángulo con vértice en el centro de un círculo cuyos lados son cortados por el arco de la circunferencia, y que además dicho arco tiene una longitud igual a la del radio.[1]

El ángulo formado por dos radios de una circunferencia, medido en radianes, es igual a la longitud del arco que delimitan los radios dividida entre el radio; es decir, θ = s/r, donde θ es el ángulo, s es la longitud de arco, y r es el radio. Por tanto, el ángulo completo, , que subtiende una circunferencia de radio r, medido en radianes, es:

Utilidad

El radián es una unidad sumamente útil para medir ángulos, puesto que simplifica los cálculos, ya que los más comunes se expresan mediante sencillos múltiplos o divisores de π.

Análisis dimensional

El radián es la unidad natural en la medida de los ángulos. Por ejemplo, la función seno de un ángulo x expresado en radianes cumple:

Análogamente los desarrollos Taylor de las funciones seno y coseno son:

donde x se expresa en radianes.

Equivalencias

  • La equivalencia entre grados sexagesimales y radianes es: π rad = 180°. Por tanto

1 radián = 57,29577951… grados sexagesimales y

1 grado sexagesimal = 0,01745329252… radianes.

  • La equivalencia entre grados centesimales y radianes es: π rad = 200g

La tabla muestra la conversión de los ángulos más comunes.

Grados 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
Radianes 0 π/6 π/4 π/3 π/2 /3 /4 /6 π /6 /4 /3 /2 /3 /4 11π/6

Otras unidades de medida de ángulos convencionales son el grado sexagesimal, el grado centesimal y, en astronomía, la hora.

  • El radián tiene una unidad derivada llamada radián por segundo (rad/s), que corresponde a la magnitud velocidad angular. Esta unidad tiene una equivalencia con las rpm. Las equivalencias se pueden calcular fácilmente haciendo la siguiente relación:

, que simplificada es: , o bien: .

Es decir que, para pasar una cantidad x de rpm a rad/s tenemos que multiplicarla por π/30:


Análogamente, para pasar una cantidad y de rad/s a rpm tenemos que multiplicarla por 30/π:


Conversiones entre grados y radianes

Ángulos de los polígonos más comunes medidos en radianes, expresados como fracciones de π
Ángulos de los polígonos más comunes medidos en radianes, expresados como fracciones de π
Tabla de conversión entre grados sexagesimales y radianes
Tabla de conversión entre grados sexagesimales y radianes

Los grados y los radianes son dos diferentes sistemas para medir ángulos. Un ángulo de 360° equivale a 2π radianes; un ángulo de 180° equivale a π radianes (recordemos que el número π ≈ 3,14159265359…).

Las equivalencias de los principales ángulos se muestran en las siguientes figuras:

Para convertir grados en radianes o viceversa, partimos de que 180° equivalen a π radianes; luego planteamos una regla de tres y resolvemos.

  • Ejemplo A

Convertir 38° a radianes:

Primero planteamos la regla de tres. Nótese que la x va arriba, en la posición de los radianes.

Despejamos x, también simplificamos.

Por último obtenemos el equivalente decimal:

x = 0,6632 radianes.

  • Ejemplo B

Convertir 2,4 radianes a grados.

Primero planteamos la regla de tres. Nótese que la x va abajo, en la posición de los grados.

Despejamos x.

Por último obtenemos el equivalente decimal:

Diferencia entre radián, gradián, y grado sexagesimal

Los tres son unidades de medida de ángulos planos, y se diferencian así:

  • Radián (rad): ángulo que describe un arco cuya longitud es la del radio.
  • Gradián o grado centesimal (g): ángulo que describe un arco cuya longitud es la cuadringentésima (1/400) parte de una circunferencia.
  • Grado sexagesimal (°): ángulo que describe un arco cuya longitud es la tricentésima sexagésima (1/360) parte de una circunferencia.

Véase también

Referencias

  1. «¿Qué es un radián?». 30 de octubre de 2014. Consultado el 29 de julco=Gaussianos. 

Bibliografía

  • Florian Cajori, 1929, History of Mathematical Notations, Vol. 2, pp. 147–148; Nature, 1910, Vol. 83, pp. 156, 217, y 459—460;


Esta página se editó por última vez el 8 abr 2021 a las 15:13.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.