To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Conjunto preordenado

De Wikipedia, la enciclopedia libre

Relación homogéneaRelación reflexivaRelación no reflexivaConjunto preordenadoRelación de dependenciaConjunto parcialmente ordenadoRelación de equivalenciaOrden totalAcotadoOrden total acotado

En matemática, especialmente en teoría del orden, preórdenes son ciertas clases de relaciones binarias que se relacionan con los conjuntos parcialmente ordenados. El nombre cuasiorden es también una expresión común para preórdenes. Muchas definiciones teóricas para los conjuntos parcialmente ordenados se pueden generalizar a preórdenes, pero el esfuerzo adicional de generalización raramente se necesita. Con todo hay campos de uso, tales como la definición de la convergencia vía redes en topología, donde los preórdenes no se pueden substituir por conjuntos parcialmente ordenados sin perder propiedades importantes.

Definición formal

Considere algún conjunto P y una relación binaria R en P. Entonces R es un preorden, o un cuasiorden, si es reflexiva y transitiva, es decir, para todo a, b y c en P, tenemos que:

Es un conjunto preordenado, si cumple:

1.- La relación R es reflexiva si todo elemento a de P está relacionado consigo mismo.

2.- La relación R es transitiva si un elemento a está relacionado con otro b, y este b con otro c, entonces el elemento a esta también relacionado con el c.

Entonces en una relación binaria de preorden.

Si un preorden cumple también la propiedad simétrica para todo a, b de P, si a R b entonces b R a, (P, R) es una relación de equivalencia

Si un preorden cumple también la propiedad antisimétrica, es decir, a R b y b R a implica a = b, entonces (P, R) es un orden parcial.

Es importante diferenciar las siguientes tres propiedades:

  • La relación R es simétrica si un elemento a está relacionado con otro b, entonces el b también está relacionado con el a.

Para todo a, b de P, si se cumple que a está relacionada con b entonces b está relacionada con a.

  • La relación R es asimétrica si un elemento a está relacionado con otro b, entonces el b no está relacionado con el a.

Para todo a, b de P, si se cumple que a está relacionada con b entonces b no está relacionada con a.

  • La relación R es antisimétrica si un elemento a está relacionado con b, y b está relacionado con a, entonces a = b.

Ejemplo

Un grafo dirigido, que tiene al menos un ciclo, es preordenado dado que cumple la propiedad reflexiva y transitiva, y no es ni simétrico ni antisimétrico.

Orden parcial asociado

Dado un preorden en un conjunto , se puede definir la relación de equivalencia para . El preorden genera una relación de orden en el conjunto cociente dada por para , que está bien definida ( denota la clase de  para ).

También se puede hacer el proceso inverso: dada una partición de , un orden parcial en el ella determina un preorden en .

Esquema de temas relacionados

Teoría del orden
Bien ordenado
Orden total
Parcialmente ordenado
Preordenado
Conjunto
Relación binaria
Relación reflexiva
Relación transitiva
Relación antisimétrica
Relación total
Relación bien fundada


Referencias

Esta página se editó por última vez el 11 feb 2024 a las 00:37.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.