To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Operador adjunto

De Wikipedia, la enciclopedia libre

En matemáticas, para todo operador lineal sobre un espacio de Hilbert puede definirse su operador adjunto. Este es una generalización del concepto de matriz adjunta al caso de espacios de dimensión infinita.

El adjunto de un operador A, también llamado Adjunto hermítico o Conjugado hermítico (en honor a Charles Hermite) de A se denota por A* o por A, este último especialmente usado cuando se utiliza junto a la notación Notación de Dirac o Bra-Ket, común en la Mecánica Cuántica.

YouTube Encyclopedic

  • 1/3
    Views:
    442
    1 459 130
    140 593
  • Operador columna en Matlab
  • Распаковка Apple Watch Edition за 100.000 рублей и какие часы Apple выбрать
  • Diagonalización de matrices (Universidad)

Transcription

Definición

Para definir el operador adjunto a un operador lineal dado, se ha de especificar el dominio de dicho operador y sus imágenes:

Sea A : DAHH un operador lineal sobre un espacio de Hilbert y sea xH un vector de dicho espacio. Si para cada vector yDA en el dominio de A se tiene:

para algún zH en el espacio, entonces se dice que x está en el dominio del operador adjunto de A, A*,[1]​ y que z es la imagen de x por dicho operador:

Nótese que ha de probarse que, tal y como aparecen en la definición, DA* es un subespacio, y que el operador A* es lineal.

Ejemplos.

dentro del subespacio DPL2 de funciones derivables cuya derivada esté a su vez en L2. El producto escalar de Pf con otra función g es:

y puede aplicarse entonces integración por partes siempre que g sea derivable:

Para que g esté en el dominio del operador adjunto P*, además de ser derivable, –ig' ha de pertenecer a L2. Por lo tanto, el subespacio DP* es igual a DP, y el operador P* actúa del mismo modo que P, por lo que son idénticos (es decir, el operador P es autoadjunto).

Referencias

  1. Es común también la notación A, «A daga».
  • Akhiezer, N.I.; Glazman, I.M. (1993). Theory of Linear Operators in Hilbert Space (en inglés). Dover Publications. ISBN 0-486-67748-6. 
Esta página se editó por última vez el 15 oct 2022 a las 20:53.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.