To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Multiplicación de matrices

De Wikipedia, la enciclopedia libre

En matemática, la multiplicación o producto de matrices es la operación de composición efectuada entre dos matrices, o bien la multiplicación entre una matriz y un escalar según unas determinadas reglas.

Al igual que la multiplicación aritmética, su definición es instrumental, es decir, viene dada por un algoritmo capaz de efectuarla. El algoritmo para la multiplicación matricial es diferente del que resuelve la multiplicación de dos números. La diferencia principal es que la multiplicación de matrices no cumple con la propiedad de conmutatividad.

Multiplicación de una matriz por un escalar

Dada una matriz A de m filas y n columnas es una matriz del tipo:


que se escribe genéricamente como

la multiplicación de A por un escalar k, que se denota k·A, k×A o simplemente kA es:

que se escribe genéricamente como

En el caso particular de multiplicación por enteros, se puede considerar como sumar o restar la misma matriz tantas veces como indique el escalar:

Propiedades

Sean A, B matrices y c, d escalares, la multiplicación de matrices por escalares cumple con las siguientes propiedades:

Propiedad Descripción
Clausura cA es también una matriz
Elemento neutro Existe el elemento neutro uno, de manera que 1·A = A
Propiedad asociativa
Propiedad distributiva
- De escalar
- De matriz

c(A+B) = cA+cB
(c+d)A = cA+dA

Multiplicación de una matriz por otra matriz

Los resultados en las posiciones marcadas dependen de las filas y columnas de sus respectivos colores.
Los resultados en las posiciones marcadas dependen de las filas y columnas de sus respectivos colores.

Dadas dos matrices A y B, tales que el número de columnas de la matriz A es igual al número de filas de la matriz B; es decir:

y

la multiplicación de A por B, que se denota o simplemente , el resultado del producto es una nueva matriz C:

donde cada elemento ci,j está definido por:

es decir:

Propiedades

Sean A, B y C matrices para las cuales la multiplicación entre ellas está bien definida, es decir, tales que sus elementos pertenecen a un grupo donde la multiplicación está definida, y de manera que el número de filas y de columnas permite realizar la multiplicación; entonces se cumplen las siguientes propiedades:

Propiedad Descripción
Clausura AB es también una matriz
Elemento neutro Si A es una matriz cuadrada de tamaño m, entonces la matriz identidad Im×m es elemento neutro, de manera que: I·A = A·I = A
Propiedad asociativa
Propiedad distributiva
- Por la derecha
- Por la izquierda


Demostración de la propiedad asociativa
Sean A una matriz de mxn; B una matriz de nxp; y C un matriz de pxq. Entonces, AB será una matriz de mxp. Del mismo modo, BC será una matriz de nxq. Por lo tanto, usando sumatoria, verificaremos la propiedad asociativa del producto de matrices, es decir, (AB)C=A(BC). Para AB:

Luego, multiplicando D por C:

Reemplazando D por AB:

(1)

Ahora, para BC:

Luego, multiplicando A por E:

Reemplazando E por BC:

(2)

Con lo que verificamos que (1) y (2) son iguales y se cumple la propiedad asociativa:

El producto de dos matrices generalmente no es conmutativo, es decir, AB ≠ BA.

y por el contrario

La división entre matrices, es decir, la operación que podría producir el cociente A / B, no se encuentra definida. Sin embargo, existe el concepto de matriz inversa, sólo aplicable a las matrices invertibles.

Finalmente, note que tanto la multiplicación de una matriz por un escalar, como la multiplicación de dos escalares, puede representarse mediante una multiplicación de dos matrices:

Aplicaciones

La multiplicación de matrices es muy útil para la resolución de sistemas de ecuaciones de muchas variables, dado que son muy cómodas para ser implementadas mediante un computador. El cálculo numérico se basa en gran parte de estas operaciones, al igual que aplicaciones como MATLAB y Octave. También actualmente se utiliza mucho en el cálculo de microarrays, en el área de bioinformática.

Sistemas de ecuaciones

Consideremos el caso más sencillo, el de las matrices cuadradas de orden 2, es decir cuando n = m = 2. Las aplicaciones lineales del plano real que, al punto M(x1,x2) hacen corresponder el punto N(y1,y2) se expresan como un sistema de dos ecuaciones con dos variables. Las matrices permiten escribirlos más rápidamente. Así, por ejemplo, el sistema:

   se escribe de forma matricial así:     

Como se ve, en la notación matricial, las variables sólo aparecen una vez, así como el símbolo "=", y los signos "+" ni se escriben. Los ahorros de tiempo y energía no son enormes aquí, pero crecen con las dimensiones de la matriz.

Ahora bien, las aplicaciones lineales se pueden sumar, lo que daría la adición de las matrices que se definió arriba, pero no se pueden multiplicar. Sin embargo, existe otra operación, universal en el campo de las aplicaciones: la composición, es decir aplicar sucesivamente dos o más funciones a un objeto. Al componer:

obtenemos:

lo que corresponde a la matriz:
Por lo tanto se define el producto de matrices así:

Referencias

Enlaces externos


Esta página se editó por última vez el 11 jul 2021 a las 20:20.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.