To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
Live Statistics
Spanish Articles
Improved in 24 Hours
Added in 24 Hours
Languages
Recent
Show all languages
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

De Wikipedia, la enciclopedia libre

Un maxterm, máxterm, maxtérmino o maxitérmino consiste únicamente en una expresión algebraica booleana de disyunción lógica de una serie de variables booleanas, cada una de las cuales puede estar negada o no. Como es una disyunción lógica, solamente se evalúa como falsa () para una única combinación de esas variables.

Un maxterm se forma sumando (OR lógico) todas las variables, negando aquellas que valen en la combinación para la cual el maxterm vale . Para n variables booleanas, existen maxterms, uno para cada posible combinación de ellas. Se emplean para expresar una función lógica en forma canónica conjuntiva.

Los maxterms son una expresión dual de los minterm, donde, en vez de usar operaciones OR, se utilizan operaciones AND, procediendo de forma similar.

Notación

Asumiendo un determinado orden para las variables, un maxterm puede denotarse abreviadamente como , valiendo sólo para la combinación de variables booleanas que codifican en base 2 el número decimal . Tal codificación establece una correspondencia entre las variables y los dígitos, de forma que a cada variable negada en el maxterm, corresponde un dígito en la misma posición y si no, un .

Por ejemplo:

  • Para 3 variables , el maxterm será aquel que solamente vale para la combinación (6 en base 2), esto es, .
  • Para 4 variables , el maxterm es (0110=6).
  • El maxterm para 5 variables será (01101=13)

Por ejemplo, los siguientes términos canónicos son maxtérminos:

Forma canónica conjuntiva

Una función lógica puede expresarse en forma canónica conjuntiva, es decir como producto de todos sus maxterm, representada así: , donde los valores son el número de las filas de la tabla de verdad en que el resultado es .

Ejemplo
corresponde a la función cuyo resultado se representa en la siguiente tabla de verdad porque las filas codificadas en binario como y (segunda y tercera) tienen como valor 0:
Resultado
0 0 1
0 1 0
1 0 0
1 1 1

Por ejemplo, el maxterm sólo vale para la combinación , y . Para cualquier otra combinación, esa expresión vale .

Ejemplo

Basados en una función de 3 variables (a, b, c), y considerando la dificultad de poner el negado de una variable como una barrita superior (aunque el apóstrofe es también utilizado), tenemos lo siguiente:

f(a,b,c) = (a+bc+ac)b <-Forma no normalizada

Puede expresarse en maxtérminos, por lo cual demanda una interpretación normalizada de Producto de Sumas (Normalizada = PS)

Expresión Comentarios
= (a+bc+ac)b Variable "a" separa la multiplicación a su lado derecho
= [(a+b)(a+c)+ac]b Variable "ac" se incluye en cada suma a su izquierda
= (ac+a+b)(ac+a+c)b Variables "ac separadas por las sumas a su lado
= (a+b+a)(a+b+c)(a+c+a)(a+c+c)(b) Eliminar términos por ley de identidad
= (a+b+c)(a+c)(b) Forma normalizada

Puede expresarse en maxtérminos de forma normalizada como un producto de sumas (forma canónica conjuntiva):

Expresión Comentarios
= (a+b+c)(a+c)(b) Agregar variables faltantes a cada término
= (a+b+c)(a+c+bb)(b+aa+cc) Despejar en la forma PS
= (a+b+c)(a+c+b)(a+c+b)(a+b+c)(a+b+c)(a+b+c)(a+b+c) Eliminar términos idénticos
= (a+b+c)(a+b+c)(a+b+c)(a+b+c)(a+b+c) Forma canónica
= M2 * M0 * M4 * M1 * M5 Forma expresada en producto de maxtérminos
= M(0,1,2,4,5) Forma en función de maxtérminos

+De este modo tenemos los maxtérminos, lo cual facilita (sobre todo cuando son 3 o más variables) encontrar la solución de la función. En la tabla de verdad, los maxtérminos se representan con un 0 cuando están presentes. Recordemos que cada negado en cada término vale 1.

+He aquí la comprobación:

a b c (a+bc+ac)b Max
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 0 0
1 1 0 1 1
1 1 1 1 1

Recuerde que la lógica empleada en los maxtérminos es exactamente opuesta a la aplicada en los mintérminos.

Véase también

Esta página se editó por última vez el 2 mar 2020 a las 09:26.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.