To install click the Add extension button. That's it.

The source code for the WIKI 2 extension is being checked by specialists of the Mozilla Foundation, Google, and Apple. You could also do it yourself at any point in time.

4,5
Kelly Slayton
Congratulations on this excellent venture… what a great idea!
Alexander Grigorievskiy
I use WIKI 2 every day and almost forgot how the original Wikipedia looks like.
What we do. Every page goes through several hundred of perfecting techniques; in live mode. Quite the same Wikipedia. Just better.
.
Leo
Newton
Brights
Milds

Matriz unitaria

De Wikipedia, la enciclopedia libre

En matemática, una matriz unitaria es una matriz compleja U, de n por n elementos, que satisface la condición:

donde es la matriz identidad y es el traspuesto conjugado (también llamado el hermitiano adjunto o la hermítica) de U. Esta condición implica que una matriz U es unitaria si tiene inversa igual a su traspuesta conjugada .

Una matriz unitaria en la que todas las entradas son reales es una matriz ortogonal, y por tanto preserva el producto escalar de dos vectores reales.

así que una matriz unitaria U satisface

para todos los vectores complejos x e y', donde representa al producto escalar en . Si es una matriz n por n entonces las siguientes condiciones son equivalentes:

  1. es unitaria
  2. es unitaria
  3. Las columnas de forman una base ortonormal de con respecto al producto escalar usual.
  4. Las filas de forman una base ortonormal de con respecto al producto escalar usual.
  5. es una isometría con respecto a la norma de su producto escalar

Se desprende de la definición de isometría que todos los autovalores de una matriz unitaria son números complejos de valor absoluto 1. Como el determinante es el producto de los valores propios podemos concluir que el determinante de una matriz unitaria tiene módulo 1.

Todas las matrices unitarias son normales, y el teorema espectral se aplica a a ellas. De esta forma, toda matriz unitaria U tiene una descomposición de la forma

donde V es unitaria, y es diagonal y unitaria.

Para todo n, el conjunto de todas las matrices unitarias n por n forman un  grupo con el producto de matrices.

Una matriz unitaria es especial si su determinante es 1.

YouTube Encyclopedic

  • 1/3
    Views:
    552
    1 375
    1 378
  • Matriz Inversa: Como Hallar la Matriz Inversa de una Matriz 3x3 TuProfeYouTube
  • Determinante - O que é e como Calcular? Matrizes 1x1; 2x2; e 3x3
  • 11. Converzaciones con la Matriz II

Transcription

Véase también

Enlaces externos

Esta página se editó por última vez el 7 ago 2021 a las 14:14.
Basis of this page is in Wikipedia. Text is available under the CC BY-SA 3.0 Unported License. Non-text media are available under their specified licenses. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. WIKI 2 is an independent company and has no affiliation with Wikimedia Foundation.